Advertisement

Letters in Mathematical Physics

, Volume 109, Issue 3, pp 675–698 | Cite as

New exact results on density matrix for XXX spin chain

  • T. Miwa
  • F. SmirnovEmail author
Article
  • 36 Downloads

Abstract

Using the fermionic basis, we obtain the expectation values of all \({\mathfrak {sl}}_{2}\)-invariant and C-invariant local operators on 10 sites for the anisotropic six-vertex model on a cylinder with generic Matsubara data. This is equivalent to the generalised Gibbs ensemble for the XXX spin chain. In the case when the \({\mathfrak {sl}}_{2}\) and C symmetries are not broken this computation is equivalent to finding the entire density matrix up to 10 sites. As application, we compute the entanglement entropy without and with temperature, and compare the results with CFT predictions.

Keywords

Integrable model XXX antiferromagnet Entanglement density matrix Entanglement entropy 

Notes

Acknowledgements

TM thanks to T. Ooura for suggesting his kernel function used in our calculation.

References

  1. 1.
    Boos, H.E., Korepin, V.E.: Quantum spin chains and Riemann zeta function with odd arguments. J. Phys. A 34, 5311–5316 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boos, H., Jimbo, M., Miwa, T., Smirnov, F., Takeyama, Y.: A recursion formula for the correlation functions of an inhomogeneous XXX model. Algebra i Anal. 17, 115–159 (2005)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Sato, J., Shiroishi, M., Takahashi, M.: Exact evaluation of density matrix elements for the Heisenberg chain. J. Stat. Mech. 0612, P12017 (2006)CrossRefGoogle Scholar
  4. 4.
    Jimbo, M., Miwa, T., Smirnov, F.: Hidden Grassmann structure in the XXZ model III: introducing matsubara direction. J. Phys. A 42, 304018 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Di Francesco P., Smirnov, F.: OPE for XXX. Rev. Math. Phys. 30(06), 1840006-1–1840006-17 (2018)Google Scholar
  6. 6.
    Slavnov, N.A.: Calculation of scalar products of wave functions and form factors in the framework of the alcebraic Bethe ansatz. Theor. Math. Phys. 79, 502–508 (1989)CrossRefGoogle Scholar
  7. 7.
    Faddeev, L.D., Sklyanin, E.K., Takhtajan, L.A.: The quantum inverse problem method. Theor. Math. Phys. 40, 688–711 (1980)zbMATHGoogle Scholar
  8. 8.
    Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar
  9. 9.
    Boos, H., Göhmann, F., Klümper, A., Suzuki, J.: Factorization of the nite temperature correlation functions of the XXZ chain in a magnetic field. J. Phys. A 40, 10699–10727 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Korepin, V.E., Lukyanov, S., Nishiyama, Y., Shiroishi, M.: Asymptotic behavior of the emptiness formation probability in the critical phase of XXZ spin chain. Phys. Lett. A 312, 21–26 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Holzhey, C., Larsen, F., Wilczek, F.: Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424, 443–467 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Klümper, A.: Thermodynamics of the anisotropic spin-1/2 Heisenberg chain and related quantum chains. Zeitschrift für Physik B Condens. Matter 91, 507–519 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    Mori, M., Sugihara, M.: The double-exponential transformation in numerical analysis. J. Comput. Appl. Math. 127, 287–296 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ooura, T.: Double exponential quadratures for various kinds of integral. In: Talk given at Second International ACCA-JP/UK Workshop, January 19. Kyoto University (2016)Google Scholar
  15. 15.
    Boos, H., Jimbo, M., Miwa, T., Smirnov, F.: Hidden Grassmann structure in the XXZ model IV: CFT limit. Commun. Math. Phys. 299, 825–866 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Korepin, V.E.: Universality of entropy scaling in one dimensional gapless models. Phys. Rev. Lett. 92(9), 096402 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Calabrese, P., Cardy, J.: Entanglement entropy and conformal field theory. J. Phys. A 42, 504005–504036 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute for Liberal Arts and SciencesKyoto UniversityKyotoJapan
  2. 2.UPMC Univ Paris 06, CNRS, UMR 7589, LPTHESorbonne UniversitéParisFrance

Personalised recommendations