Advertisement

Mathematical Geosciences

, Volume 51, Issue 1, pp 109–125 | Cite as

Fast and Interactive Editing Tools for Spatial Models

  • Julien StraubhaarEmail author
  • Philippe Renard
  • Grégoire Mariethoz
  • Tatiana Chugunova
  • Pierre Biver
Article
  • 244 Downloads

Abstract

Multiple point statistics (MPS) algorithms allow generation of random fields reproducing the spatial features of a training image (TI). Although many MPS techniques offer options to prescribe characteristics deviating from those of the TI (e.g., facies proportions), providing a TI representing the target features as well as possible is important. In this paper, methods for editing stationary images by applying a transformation—painting or warping—to the regions, similar to a representative pattern selected by the user in the image itself, are proposed. Painting simply consists in replacing image values, whereas warping consists in deforming the image grid (compression or expansion of similar regions). These tools require few parameters and are interactive: the user defines locally how the image should be modified, then the changes are propagated automatically to the entire image. Examples show the ability of the proposed methods to keep spatial features consistent within the entire edited image.

Keywords

Self-similarity Image transformation Grid deformation Multiple point statistics 

Notes

Acknowledgements

We are grateful to TOTAL S.A. for co-funding this work.

References

  1. Allard D, D’Or D, Froidevaux R (2011) An efficient maximum entropy approach for categorical variable prediction. Eur J Soil Sci 62(3):381–393.  https://doi.org/10.1111/j.1365-2389.2011.01362.x CrossRefGoogle Scholar
  2. Bookstein FL (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567–585.  https://doi.org/10.1109/34.24792 CrossRefGoogle Scholar
  3. Boucher A, Costa JF, Rasera LG, Motta E (2014) Simulation of geological contacts from interpreted geological model using multiple-point statistics. Math Geosci 46(5, SI):561–572.  https://doi.org/10.1007/s11004-013-9510-1 CrossRefGoogle Scholar
  4. Brooks S, Dodgson N (2002) Self-similarity based texture editing. ACM Trans Graph 21(3):653–656CrossRefGoogle Scholar
  5. Chugunova T, Hu L (2008) Multiple-point simulations constrained by continuous auxiliary data. Math Geosci 40(2):133–146.  https://doi.org/10.1007/s11004-007-9142-4 CrossRefGoogle Scholar
  6. Jäggli C, Straubhaar J, Renard P (2017) Posterior population expansion for solving inverse problems. Water Resour Res 53(4):2902–2916.  https://doi.org/10.1002/2016WR019550 CrossRefGoogle Scholar
  7. Keahey TA, Robertson EL (1997) Nonlinear magnification fields. In: Proceedings of the 1997 IEEE symposium on information visualization (INFOVIS ’97). IEEE Computer Society, Washington, DC, USA, pp 51–58Google Scholar
  8. Li L, Srinivasan S, Zhou H, Jaime Gomez-Hernandez J (2015) A local-global pattern matching method for subsurface stochastic inverse modeling. Environ Modell Softw 70:55–64.  https://doi.org/10.1016/j.envsoft.2015.04.008 CrossRefGoogle Scholar
  9. Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res.  https://doi.org/10.1029/2008WR007621 Google Scholar
  10. Mariethoz G, Straubhaar J, Renard P, Chugunova T, Biver P (2015) Constraining distance-based multipoint simulations to proportions and trends. Environ Modell Softw 72:184–197.  https://doi.org/10.1016/j.envsoft.2015.07.007 CrossRefGoogle Scholar
  11. Straubhaar J, Renard P, Mariethoz G, Froidevaux R, Besson O (2011) An improved parallel multiple-point algorithm using a list approach. Math Geosci 43(3):305–328.  https://doi.org/10.1007/s11004-011-9328-7 CrossRefGoogle Scholar
  12. Straubhaar J, Renard P, Mariethoz G (2016) Conditioning multiple-point statistics simulations to block data. Spat Stat 16:53–71.  https://doi.org/10.1016/j.spasta.2016.02.005 CrossRefGoogle Scholar
  13. Strebelle S, Zhang T (2005) Non-stationary multiple-point geostatistical models. Springer, Dordrecht, pp 235–244.  https://doi.org/10.1007/978-1-4020-3610-1_24
  14. Tahmasebi P (2017) Structural adjustment for accurate conditioning in large-scale subsurface systems. Adv Water Resour 101:60–74.  https://doi.org/10.1016/j.advwatres.2017.01.009 CrossRefGoogle Scholar
  15. Zhang T, Switzer P, Journel A (2006) Filter-based classification of training image patterns for spatial simulation. Math Geol 38(1):63–80.  https://doi.org/10.1007/s11004-005-9004-x CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2018

Authors and Affiliations

  1. 1.The Centre for Hydrogeology and Geothermics (CHYN)University of NeuchâtelNeuchâtelSwitzerland
  2. 2.Institute of Earth Surface Dynamics (IDYST)University of Lausanne, UNIL-Mouline, GeopolisLausanneSwitzerland
  3. 3.Geostatistics and UncertaintiesTOTAL SAPauFrance

Personalised recommendations