Advertisement

Mathematical Geosciences

, Volume 51, Issue 2, pp 129–153 | Cite as

Geostatistical Simulation of Geochemical Compositions in the Presence of Multiple Geological Units: Application to Mineral Resource Evaluation

  • Hassan TalebiEmail author
  • Ute Mueller
  • Raimon Tolosana-Delgado
  • K. Gerald van den Boogaart
Article
  • 226 Downloads

Abstract

An accurate prediction of benefit in ore deposits with heterogeneous spatial variations requires the definition of geological domains that differentiate the types of mineralogy, alteration, and lithology, as well as the prediction of full mineral and geochemical compositions within each modeled domain and across boundaries between different domains. This paper proposes and compares various approaches (different combinations of log-ratio transformation, Gaussian and flow anamorphosis, and deterministic or probabilistic geological models) for geostatistical simulation of geochemical compositions in the presence of several geological domains. Different approaches are illustrated through an application to a nickel–cobalt laterite deposit located in Western Australia. Four rock types (ferruginous, smectite, saprolite, and ultramafic) are considered to define compositionally homogeneous domains. Geochemical compositions are comprised of six different components of interest (Fe, Al, Mg, Ni, Co, and Filler). The results suggest that the flow anamorphosis is a vital element for geostatistical modeling of geochemical composition due to its invariance properties and capability for reproducing complex patterns in input data, including: presence of outliers, presence of several populations (due to the presence of several geological domains), nonlinearity, and heteroscedasticity.

Keywords

Compositional data Log-ratio Flow anamorphosis Geostatistical simulation Geological domaining 

Notes

Acknowledgements

The authors acknowledge financial support through DAAD-UA grant CodaBlockCoEstimation.

References

  1. Aitchison J (1982) The statistical analysis of compositional data (with discussion). J R Stat Soc B Methodol 44:139–177Google Scholar
  2. Aitchison J (1986) The statistical analysis of compositional data. Monographs on statistics and applied probability. Chapman & Hall, London. Reprinted in 2003 with additional material by The Blackburn PressGoogle Scholar
  3. Alabert F (1987a) The practice of fast conditional simulations through the LU decomposition of the covariance matrix. Math Geol 19(5):369–386.  https://doi.org/10.1007/BF00897191 CrossRefGoogle Scholar
  4. Alabert FG (1987b) Stochastic imaging of spatial distributions using hard and soft information. MSc thesis, Stanford University, Stanford, CAGoogle Scholar
  5. Armstrong M, Galli A, Beucher H, Le Loc’h G, Renard D, Doligez B, Eschard R, Geffroy F (2011) Plurigaussian simulations in geosciences. Springer, BerlinCrossRefGoogle Scholar
  6. Bandarian EM, Bloom LM, Mueller UA (2008) Direct minimum/maximum autocorrelation factors within the framework of a two structure linear model of coregionalisation. Comput Geosci 34(3):190–200.  https://doi.org/10.1016/j.cageo.2007.03.015 CrossRefGoogle Scholar
  7. Boisvert JB, Rossi ME, Ehrig K, Deutsch CV (2013) Geometallurgical modeling at Olympic dam mine, South Australia. Math Geosci 45(8):901–925.  https://doi.org/10.1007/s11004-013-9462-5 CrossRefGoogle Scholar
  8. Buccianti A, Pawlowsky-Glahn V, Barceló-Vidal C, Jarauta-Bragulat E (1999) Visualization and modeling of natural trends in ternary diagrams: a geochemical case study. In: Lippard SJ, Naess A, Sinding-Larsen R (eds) IAMG’99: proceedings of the 5th annual conference of the International Association for Mathematical Geology, Trondheim, Norway, August 1999, pp 139–144Google Scholar
  9. Camuti KS, Riel RG (1996) Mineralogy of the Murrin Murrin nickel laterites. In: Grimsey EJ, Neuss I (eds) Proceedings of Nickel ’96: mineral to market, Kalgoorlie, Western Australia, November 1996. AusIMM, Melbourne, pp 209–210Google Scholar
  10. Chilès JP, Delfiner P (2012) Geostatistics: modeling spatial uncertainty. Wiley, New YorkCrossRefGoogle Scholar
  11. Desbarats AJ, Dimitrakopoulos R (2000) Geostatistical simulation of regionalized pore-size distributions using min/max autocorrelation factors. Math Geol 32(8):919–942CrossRefGoogle Scholar
  12. Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide. Oxford University Press, New York, NYGoogle Scholar
  13. Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35:279–300CrossRefGoogle Scholar
  14. Emery X (2007) Simulation of geological domains using the plurigaussian model: new developments and computer programs. Comput Geosci 33(9):1189–1201CrossRefGoogle Scholar
  15. Emery X (2008) A turning bands program for conditional co-simulation of cross-correlated Gaussian random fields. Comput Geosci 34(12):1850–1862CrossRefGoogle Scholar
  16. Emery X, González KE (2007a) Probabilistic modelling of lithological domains and it application to resource evaluation. J S Afr Inst Min Metall 107(12):803–809Google Scholar
  17. Emery X, González KE (2007b) Incorporating the uncertainty in geological boundaries into mineral resources evaluation. J Geol Soc India 69(1):29–38Google Scholar
  18. Emery X, Lantuéjoul C (2006) TBSIM: a computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method. Comput Geosci 32(10):1615–1628.  https://doi.org/10.1016/j.cageo.2006.03.001 CrossRefGoogle Scholar
  19. Emery X, Arroyo D, Porcu E (2016) An improved spectral turning-bands algorithm for simulating stationary vector Gaussian random fields. Stoch Environ Res Risk Assess 30(7):1863–1873.  https://doi.org/10.1007/s00477-015-1151-0 CrossRefGoogle Scholar
  20. Korkmaz S, Goksuluk D, Zararsiz G (2014) MVN: an R package for assessing multivariate normality. R J 6:151–162Google Scholar
  21. Maleki M, Emery X, Cáceres A, Ribeiro D, Cunha E (2016) Quantifying the uncertainty in the spatial layout of rock type domains in an iron ore deposit. Comput Geosci 20(5):1013–1028.  https://doi.org/10.1007/s10596-016-9574-3 CrossRefGoogle Scholar
  22. Mardia KV (1970) Measures of multivariate skewness and kurtosis with applications. Biometrika 57(3):519–530.  https://doi.org/10.1093/biomet/57.3.519 CrossRefGoogle Scholar
  23. Mariethoz G, Caers J (2014) Multiple-point geostatistics: stochastic modeling with training images. Wiley, New York, NYCrossRefGoogle Scholar
  24. Markwell T (2001) Murrin Murrin Ni/Co resource estimation: MME resource modelling report. Anaconda Operations Pty Ltd, Melbourne, VICGoogle Scholar
  25. McKinley JM, Hron K, Grunsky EC, Reimann C, de Caritat P, Filzmoser P, van den Boogaart KG, Tolosana-Delgado R (2016) The single component geochemical map: fact or fiction? J Geochem Explor 162:16–28CrossRefGoogle Scholar
  26. Mery N, Emery X, Cáceres A, Ribeiro D, Cunha E (2017) Geostatistical modeling of the geological uncertainty in an iron ore deposit. Ore Geol Rev 88:336–351.  https://doi.org/10.1016/j.oregeorev.2017.05.011 CrossRefGoogle Scholar
  27. Monti R, Fazakerley VW (1996) The Murrin Murrin nickel cobalt project. In: Grimsey EJ, Neuss I (eds) Proceedings of Nickel ’96: mineral to market, Kalgoorlie, WA, November 1996. AusIMM, Melbourne, VIC, pp 191–196Google Scholar
  28. Montoya C, Emery X, Rubio E, Wiertz J (2012) Multivariate resource modelling for assessing uncertainty in mine design and mine planning. J S Afr Inst Min Metall 112:353–363Google Scholar
  29. Mueller U, Tolosana-Delgado R, van den Boogaart KG (2014) Approaches to the simulation of compositional data—a nickel-laterite comparative case study. In: Dimitrakopoulos R (ed) Proceedings of the orebody modelling and strategic mine planning symposium, Perth, WA, November 2014. AusIMM, Melbourne, VIC, pp 61–72Google Scholar
  30. Mueller U, van den Boogaart KG, Tolosana-Delgado R (2017) A truly multivariate normal score transform based on lagrangian flow. In: Gómez-Hernández JJ, Rodrigo-Ilarri J, Rodrigo-Clavero ME, Cassiraga E, Vargas-Guzmán JA (eds) Geostatistics Valencia 2016. Springer, Cham, pp 107–118.  https://doi.org/10.1007/978-3-319-46819-8_7 CrossRefGoogle Scholar
  31. Murphy M (2003) Geostatistical optimisation of sampling and estimation in a nickel laterite deposit. MSc thesis, Edith Cowan University (unpublished)Google Scholar
  32. Ortiz JM, Emery X (2006) Geostatistical estimation of mineral resources with soft geological boundaries: a comparative study. J S Afr Inst Min Metall 106:577–584Google Scholar
  33. Pawlowsky-Glahn V, Egozcue JJ (2016) Spatial analysis of compositional data: a historical review. J Geochem Explor 164:28–32.  https://doi.org/10.1016/j.gexplo.2015.12.010 CrossRefGoogle Scholar
  34. Pawlowsky-Glahn V, Olea RA (2004) Geostatistical analysis of compositional data. Oxford University Press, New York, NYGoogle Scholar
  35. Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R (2015) Modeling and analysis of compositional data. Statistics in practice. Wiley, ChichesterGoogle Scholar
  36. Renard D, Beucher H (2012) 3D representations of a uranium roll-front deposit. Appl Earth Sci 121(2):84–88CrossRefGoogle Scholar
  37. Rondon O (2012) Teaching aid: minimum/maximum autocorrelation factors for joint simulation of attributes. Math Geosci 44:469–504CrossRefGoogle Scholar
  38. Soares A (1998) Sequential indicator simulation with correction for local probabilities. Math Geol 30(6):761–765CrossRefGoogle Scholar
  39. Switzer P, Green A (1984) Min/max autocorrelation factors for multivariate spatial imagery. Technical report no. 6, Department of Statistics, Stanford University, Stanford, CAGoogle Scholar
  40. Székely GJ, Rizzo ML (2005) A new test for multivariate normality. J Multivar Anal 93(1):58–80.  https://doi.org/10.1016/j.jmva.2003.12.002 CrossRefGoogle Scholar
  41. Székely GJ, Rizzo ML (2013) Energy statistics: a class of statistics based on distances. J Stat Plan Inference 143:1249–1272.  https://doi.org/10.1016/j.jspi.2013.03.018 CrossRefGoogle Scholar
  42. Talebi H, Asghari O, Emery X (2013) Application of plurigaussian simulation to delineate the layout of alteration domains in Sungun copper deposit. Cent Eur J Geosci 5:514–522.  https://doi.org/10.2478/s13533-012-0146-3 Google Scholar
  43. Talebi H, Asghari O, Emery X (2014) Simulation of the lately injected dykes in an Iranian porphyry copper deposit using the plurigaussian model. Arab J Geosci 7:2771–2780.  https://doi.org/10.1007/s12517-013-0911-8 CrossRefGoogle Scholar
  44. Talebi H, Asghari O, Emery X (2015) Stochastic rock type modeling in a porphyry copper deposit and its application to copper grade evaluation. J Geochem Explor 157:162–168.  https://doi.org/10.1016/j.gexplo.2015.06.010 CrossRefGoogle Scholar
  45. Talebi H, Sabeti EH, Azadi M, Emery X (2016) Risk quantification with combined use of lithological and grade simulations: application to a porphyry copper deposit. Ore Geol Rev 75:42–51.  https://doi.org/10.1016/j.oregeorev.2015.12.007 CrossRefGoogle Scholar
  46. Talebi H, Lo J, Mueller U (2017) A hybrid model for joint simulation of high-dimensional continuous and categorical variables. In: Gómez-Hernández JJ, Rodrigo-Ilarri J, Rodrigo-Clavero ME, Cassiraga E, Vargas-Guzmán JA (eds) Geostatistics Valencia 2016. Springer, Cham, pp 415–430.  https://doi.org/10.1007/978-3-319-46819-8_28 CrossRefGoogle Scholar
  47. Tercan AE (1999) Importance of orthogonalization algorithm in modeling conditional distributions by orthogonal transformed indicator methods. Math Geol 31:155–173.  https://doi.org/10.1023/A:1007557701073 Google Scholar
  48. Tolosana-Delgado R (2006) Geostatistics for constrained variables: positive data, compositions and probabilities—application to environmental hazard monitoring. Dissertation, Universitat de Girona, GironaGoogle Scholar
  49. Tolosana-Delgado R, van den Boogaart KG (2013) Joint consistent mapping of high-dimensional geochemical surveys. Math Geosci 45:983–1004.  https://doi.org/10.1007/s11004-013-9485-y CrossRefGoogle Scholar
  50. Tolosana-Delgado R, Mueller U, van den Boogaart KG, Ward C (2014) Compositional block cokriging. In: Pardo-Igúzquiza E, Guardiola-Albert C, Heredia J, Moreno-Merino L, Durán JJ, Vargas-Guzmán JA (eds) Mathematics of planet Earth: proceedings of the 15th annual conference of the International Association for Mathematical Geosciences, Madrid, September 2013. Springer, Berlin, pp 713–716.  https://doi.org/10.1007/978-3-642-32408-6_154
  51. Tolosana-Delgado R, Mueller U, van den Boogaart KG, Ward C, Gutzmer J (2015) Improving processing by adaption to conditional geostatistical simulation of block compositions. J S Afr Inst Min Metall 115:13–26CrossRefGoogle Scholar
  52. Tolosana-Delgado R, Mueller U, van den Boogaart KG (2016) Compositionally compliant contact analysis. In: Raju NJ (ed) Geostatistical and geospatial approaches for the characterization of natural resources in the environment: challenges, processes and strategies. Springer, Cham, pp 11–14.  https://doi.org/10.1007/978-3-319-18663-4_2 CrossRefGoogle Scholar
  53. van den Boogaart KG, Tolosana-Delgado R (2013) Analyzing compositional data with R. Springer, BerlinCrossRefGoogle Scholar
  54. van den Boogaart KG, Tolosana-Delgado R, Lehmann M, Mueller U (2014) On the joint multipoint simulation of discrete and continuous geometallurgical parameters. In: Dimitrakopoulos R (ed) Proceedings of the orebody modelling and strategic mine planning symposium, Perth, WA, November 2014. AusIMM, Melbourne, VIC, pp 379–388Google Scholar
  55. van den Boogaart KG, Mueller U, Tolosana-Delgado R (2017) An affine equivariant multivariate normal score transform for compositional data. Math Geosci 49:231–251.  https://doi.org/10.1007/s11004-016-9645-y CrossRefGoogle Scholar
  56. Wackernagel H (2003) Multivariate geostatistics: an introduction with applications. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2018

Authors and Affiliations

  1. 1.School of ScienceEdith Cowan UniversityJoondalupAustralia
  2. 2.Helmholtz Zentrum Dresden-RossendorfHelmholtz Institute Freiberg for Resource TechnologyFreibergGermany

Personalised recommendations