Materials Science

, Volume 55, Issue 1, pp 69–74 | Cite as

Influence of the Modes of Plasma-Electrolytic Oxidation on the Dielectric Properties of Coatings on D16T Alloy

  • Yu. G. Gutsalenko
  • E. K. SevidovaEmail author
  • І. І. Stepanova

We study the influence of plasma-electrolytic oxidation (PEO) of deformed D16Т alloy on the dielectric properties of PEO coatings in alkaline-silicate electrolytes. It is shown that the increase in the duration of oxidation from 1 h to 2 h under the conditions of arbitrarily falling power (AFP) and alternating current leads to worsening of the parameter ρv by a factor of 2–2.5 and a decrease in the electric strength E by 30–40%. In the galvanostatic mode, under the conditions of identical thicknesses of the coatings, the electrical parameters insignificantly decrease as the anode current increases within the range 5–15 A/dm2 . At the same time, their dependence on the composition of electrolyte is more pronounced. It is known that the best characteristics of volume resistance ρv = 3.3–4.3·109 Ω·m and E = 10–13 V/μm in both modes are attained for the alkaline-silicate (1:6) and silicate (0:12) solutions of electrolytes. The absolute values of characteristics of the coatings formed under the conditions of AFP are 1.2–1.9 times higher than the similar characteristics of oxide layers formed in the galvanostatic mode.


plasma-electrolytic oxidation dielectric properties PEO coating electrolytes 


  1. 1.
    М. М. Student, V. М. Posuvailo, H. H. Veselivs’ka, Ya. Ya. Sirak, and R. А. Yatsyuk, “Corrosion resistance of plasma-electrolytic layers on alloys and coatings of the Al–Cu–Mg system for various modes of heat treatment,” Fiz.-Khim. Mekh. Mater.,53, No. 6, 42–47 (2017); English translation:Mater. Sci.,53, No. 6, 789–795 (2017).CrossRefGoogle Scholar
  2. 2.
    I. V. Suminov, P. M. Belkin, A. V. Epel’fel’d, V. B. Lyudin, B. L. Krit, and A. M. Borisov, Plasma-Electrolytic Modification of the Surface of Metals and Alloys [in Russian], Vol. 2, Tekhnosfera, Moscow (2011).Google Scholar
  3. 3.
    A. E. Mikheev, N. A. Terekhin, and V. V. Statsura, “Technological possibilities of the microarc oxidation of aluminum alloys,” Vestn. Mashinostr., No. 2, 56–63 (2003).Google Scholar
  4. 4.
    V. V. Bakovets, O. V. Polyakov, and I. P. Dolgovesova, Plasma-Electrolytic Anodic Treatment of Metals [in Russian], Nauka, Novosibirsk (1991).Google Scholar
  5. 5.
    S. G. Pavlyus, V. P. Sobornitskii, Yu. A. Sheprut, L. A. Snezhko, and V. I. Chernenko, “Dielectric properties of anodic-spark silicate coatings on aluminum,” Elektron. Obrab. Mater., No. 3, 34–36 (1987).Google Scholar
  6. 6.
    M. M. Filyak and O. N. Kanygina, “Electrophysical properties of anodic aluminum oxide,” Vestn. OGU, No. 9 (158), 240–243 (2013).Google Scholar
  7. 7.
    V. I. Chernenko, L. A. Snezhko, and I. I. Papanova, Production of Coatings by Anodic-Spark Electrolysis [in Russian], Khimiya, Leningrad (1991).Google Scholar
  8. 8.
    Yu. G. Gutsalenko, E. K. Sevidova, V. V. Belozerov, and H. I. Makhatilova, A Grinding Disc [in Ukrainian], Patent of Ukraine for a Useful Model UA 117767U V24D 5/16 (2006.01), Publ. on 10.07.2017; Bull. No. 13.Google Scholar
  9. 9.
    E. K. Sevidova, I. I. Stepanova, Yu. G. Gutsalenko, and K. M. Alekseev, A Method of the Formation of Wear-Resistant Insulating Coatings on Aluminum and Titanium Alloys [in Ukrainian], Patent of Ukraine for a Useful Model UА 111473 S25D 11 (2016.1) S25D 11/04 (2006.01), S25D 3/54 (2006.01), Publ. on 10.11.2016; Bull. No. 21.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. G. Gutsalenko
    • 1
  • E. K. Sevidova
    • 1
    Email author
  • І. І. Stepanova
    • 1
  1. 1.“Kharkiv Polytechnic Institute” National Technical UniversityKharkivUkraine

Personalised recommendations