Materials Science

, Volume 55, Issue 1, pp 33–38 | Cite as

Structural Regeneration of Coatings in Friction

  • V. P. Babak
  • V. V. Shchepetov
  • Ya. N. Gladkii
  • T. T. Suprun
  • S. S. BysEmail author

We propose a mechanism for increasing the durability of friction surfaces in the presence of in-service defects caused by the intrastructural regeneration. It is shown that, in the case of frictional interaction under the conditions of additive influence of temperature fluctuations and specific loads, all possible abnormal physicochemical transformations in the solid phase simultaneously run in the contact zone. This results in the thermal decomposition of carbides and in the formation of structurally free α -graphite. On the basis of the experimental data, it is assumed that the antifriction graphite-containing surface layer formed in the running-in mode is reproduced with the formation of an integral system of dynamically stable wear-resistant structures in the entire region of normal wear.


detonation coating wear resistance surface layer structural adaptation alloying 


  1. 1.
    A. I. Petrov and M. V. Razuvaeva, “Initial stage of the process of healing of pores and cracks in polycrystalline metals under the conditions of uniform compression,” Fiz. Tverd. Tela,47, No. 5, 880–885 (2005).Google Scholar
  2. 2.
    M. Dienwiebel, G. S. Verhoeven, N. Pradeep, and J. W. M. Frenken, “Superlubricity of graphite,” Phys. Rev. Lett.,92, 448–451 (2004).CrossRefGoogle Scholar
  3. 3.
    K. V. Kukudzhanov and A. L. Levitin, “On the action of high-energy impulsive electromagnetic fields upon microcracks in a conducting elastoplastic material,” Probl. Prochn. Plast.,77, No. 3, 217–226 (2015).Google Scholar
  4. 4.
    H. Song, Zh. Wang, and T. Gao, “Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet,” Trans. Nonferrous Soc. China,17, 87–92 (2007).CrossRefGoogle Scholar
  5. 5.
    G. V. Stepanov, V. V. Kharchenko, A. A. Kotlyarenko, and A. I. Babutskii, “Influence of treatment by impulsive magnetic fields on the fracture resistance of specimens with cracks,” Probl. Prochn., No. 2, 46–57 (2013).Google Scholar
  6. 6.
    F. Gallo, S. Satapathy, and K. Ravi-Chandar, “Melting and crack growth in electrical conductors subjected to short-duration current pulses,” Int. J. Fract.,167, 183–193 (2011).CrossRefGoogle Scholar
  7. 7.
    S. A. Kotrechko and Yu. A. Meshkov, Ultimate Strength. Crystals, Metals, and Structures [in Russian], Naukova Dumka, Kiev (2008).Google Scholar
  8. 8.
    V. P. Babak, V. V. Shchepetov, V. I. Mirnenko, and M. S. Yakovleva, A High-Temperature Wear-Resistant Nanomaterial [in Ukrainian], Patent 11,394, Ukraine, MPK (2006): B22F 7/00, C22C 27/02 (2006.01), C23C 4/126 (2016.01), C23C 4/067 (2016.01), Publ. on 27.03.2017; Byul. No. 6/2017.Google Scholar
  9. 9.
    S. Veprek, M. G. J. Veprek-Heijman, P. Karvankova, and J. Prochazka, “Different approaches to super hard coatings and nanocomposites,” Thin Solid Films,476, 1–29 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. P. Babak
    • 1
  • V. V. Shchepetov
    • 1
  • Ya. N. Gladkii
    • 2
  • T. T. Suprun
    • 1
  • S. S. Bys
    • 2
    Email author
  1. 1.Institute of Technical Thermal PhysicsUkrainian National Academy of SciencesKievUkraine
  2. 2.Khmelnitskyi National UniversityKhmelnitskyiUkraine

Personalised recommendations