Advertisement

Materials Science

, Volume 54, Issue 3, pp 361–367 | Cite as

Conditions of Self-Similarity of Edge Transverse Shear Cracks in a Square Plate

  • T. М. Lenkovs’kyi
  • P. S. Kun’
  • В. Dudda
  • E. V. Kharchenko
Article
  • 4 Downloads

We determine the stress-strain state of a rectangular plate with edge crack under the conditions of transverse shear. The conditions of self-similar crack propagation are established. We deduce a formula for the evaluation of the stress intensity factors KII via the shear stresses.

Keywords

transverse shear edge crack stress intensity factor correction function self-similarity conditions 

References

  1. 1.
    O. P. Ostash, V. H. Anofriev, I. M. Andreiko, L. A. Muradyan V. V. Kulyk, “On the concept of selection of steels for high-strength railroad wheels,” Fiz.-Khim. Mech. Mater., 48, No. 6, 7–13 (2012); English translation: Mater. Sci., 48, No. 6, 697–703 (2013).Google Scholar
  2. 2.
    T. M. Lenkovs’kyi, “Determination of the characteristics of cyclic crack resistance of steels under transverse shear (a survey),” Fiz.-Khim. Mech. Mater., 50, No. 3, 29–37 (2014); English translation: Mater. Sci., 50, No. 3, 340–349 (2014).Google Scholar
  3. 3.
    Ya. L. Ivanyts’kyi, T. M. Lenkovs’kyi, V. M. Boiko, and S. T. Shtayura, “Methods for the construction of the kinetic diagrams of fatigue fracture for steels under the conditions of transverse shear with regard for the friction of crack lips,” Fiz.-Khim. Mech. Mater., 49, No. 6, 41–45 (2013); English translation: Mater. Sci., 49, No. 6, 749–754 (2014).Google Scholar
  4. 4.
    O. P. Datsyshyn and V. V. Panasyuk, “Methods for the evaluation of the contact durability of elements of the tribojoints (a survey),” Fiz.-Khim. Mech. Mater., 52, No. 4, 7–20 (2016); English translation: Mater. Sci., 52, No. 4, 447–459 (2017).Google Scholar
  5. 5.
    O. P. Datsyshyn, V. V. Panasyuk, and A. Yu. Glazov, “The model of the residual life time estimation of tribojoint elements by formation criteria of the typical contact fatigue damages,” Int. J. Fatigue, 83, No. 2, 300–312 (2016).CrossRefGoogle Scholar
  6. 6.
    H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown (1973).Google Scholar
  7. 7.
    R. J. Hartranft and G. C. Sih, “Alternating method applied to edge and surface crack problems,” in: G. C. Sih (editor), Methods of Analysis and Solutions of Crack Problems, Noordhoff, Leyden (1973), pp. 179–238.CrossRefGoogle Scholar
  8. 8.
    D. P. Rooke and D. A. Jones, “Stress intensity factors in fretting fatigue,” J. Strain Anal. Eng. Design, 14, No. 1, 1–6 (1979).CrossRefGoogle Scholar
  9. 9.
    V. V. Panasyuk, Mechanics of Quasibrittle Fracture of Materials [in Russian], Nauka, Moscow (1991).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. М. Lenkovs’kyi
    • 1
    • 2
  • P. S. Kun’
    • 1
  • В. Dudda
    • 3
  • E. V. Kharchenko
    • 2
    • 3
  1. 1.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine
  2. 2.“L’vivs’ka Politekhnika” National UniversityLvivUkraine
  3. 3.University of Warmia and Mazury in OlsztynOlsztynPoland

Personalised recommendations