Materials Science

, Volume 54, Issue 3, pp 309–325 | Cite as

Methods for the Evaluation of Strength and Durability of Fiber-Reinforced Concretes (A Survey)

  • О. E. AndreikivEmail author
  • V. R. Skal’s’kyi
  • I. Ya. Dolins’ka
  • O. К. Raiter

The proposed survey is devoted to the analysis and synthesis of the results of investigations of the deformation and fracture of fiber-reinforced concretes. We present a survey of the following aspects of this problem: development and application of fiber-concrete technologies, basic parameters of the structure of fiber concretes and specific features of their deformation and fracture, and the methods for the evaluation of their strength and durability.


composite materials fiber concretes deformation fracture strength durability assortment of fibers matrix 


  1. 1.
    V. B. Bozhydarnik, O. E. Andreikiv, and H. T. Sulym, Fracture Mechanics, Strength, and Durability of Continuous Reinforced Composites [in Ukrainian], Vol. 1: Foundations of the Fracture Mechanics of Continuous Reinforced Composites, Nadstyr’ya, Luts’k (2007).Google Scholar
  2. 2.
    V. B. Bozhydarnik, O. E. Andreikiv, and H. T. Sulym, Fracture Mechanics, Strength, and Durability of Continuous Reinforced Composites [in Ukrainian], Vol. 2: Mathematical Methods of the Fracture Mechanics of Continuous Reinforced Composites, Nadstyr’ya, Luts’k (2007).Google Scholar
  3. 3.
    “Reinforced concrete in the XXI century,” in: State and Prospects of the Development of Concrete and Reinforced Concrete in Russia [in Russian], Gotika, Moscow (2001), pp. 216–223.Google Scholar
  4. 4.
    Yu. M. Bazhenov and V. R. Falikman, “New century: new efficient concretes and technologies,” in: Concrete at the Boundary of the Third Millennium: Proc. І All-Russian Conf. Probl. Concrete Reinforced Concrete (Sept. 9–14, 2001) [in Russian], Vol. 1, Assotsiatsiya “Zhelezobeton”, Moscow (2001), pp. 91–101.Google Scholar
  5. 5.
    V. Meshcherin, “Prevention of crack initiation in concrete with the help of its fiber reinforcement,” Beton Zhelezobeton, No. 1 (6), 50–57 (2012).Google Scholar
  6. 6.
    Fiber Concrete in Japan. Express Information. Building Structures [in Russian], VNIIIS Gosstroya SSSR, Moscow (1983).Google Scholar
  7. 7.
    VSN 56-97 Designing and Fundamentals of Technologies of the Production of Fiber-Concrete Structures [in Russian], Moscow (1997).Google Scholar
  8. 8.
    “Steel fiber concrete and products from it,” in: Ser. “Building Materials” [in Russian], Issue 7, VNIINTPI, Moscow (1990).Google Scholar
  9. 9.
    “Glass fiber concrete and products from it,” in: Ser. “Building Materials” [in Russian], Issue 5, VNIINTPI, Moscow (1990).Google Scholar
  10. 10.
    D. L. Khun, “Properties of concretes containing microsilica and carbon fiber processed by silanes,” in: Express Information, Issue 1 (2001), pp. 33–37.Google Scholar
  11. 11.
    M. Schmidt and E. Fenling, “Ultra-Hochfester Beton. Perspective für die Betonfertigteilindustrie,” Beton Fertigteiltechnik, No. 1, 16–19 (2003).Google Scholar
  12. 12.
    ACI 440.1R-2006. Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, American Concrete Institute (2006).Google Scholar
  13. 13.
    L. I. Sycheva and A. V. Volovika, Materials Reinforced with Fiber [in Russian], Stroiizdat, Moscow (1982).Google Scholar
  14. 14.
    A. P. S. Selvadurai, “The opening of an elastically bridges penny shaped flaw in a fiber reinforced composite by concentrated surface loads,” Wiss. Z., No. 2, 187–190 (1982).Google Scholar
  15. 15.
    M. Schmidt, “50 Jahre Entwicklung bei Zement, Zusatzmittel und Beton. Schriftenreihe Baustoffe,” in: M. Schmidt, Centrum Baaaustoffe und Material-prufund, No. 2. 189–198 (2003).Google Scholar
  16. 16.
    B. A. Kyrlov and V. P. Trambovetsky, “Investigation of fiber-reinforced materials in the USSR,” in: A. M. Neville (editor), RILEM Symp. on Fiber-Reinforced Cement and Concrete, II Paper 8.5, London (1975), pp. 419–424.Google Scholar
  17. 17.
    F. N. Rabinovich, Dispersion Reinforced Concretes [in Russian], Stroiizdat, Moscow (1989).Google Scholar
  18. 18.
    O. O. Dovzhenko, I. A. Yurko, and V. V. Kravchenko, “Application of fiber reinforced concrete in Ukraine. Properties of dispersion reinforced concretes,” Kommun. Khoz. Gorodov, No. 90, 267–272 (2009).Google Scholar
  19. 19.
    O. Yu. Doroshenko and Yu. M. Doroshenko, “Dispersion reinforced concrete as a reliable and efficient material for highway engineering (continuation),” Transp. Stroit. Ukrainy, No. 5, 16–20 (2007).Google Scholar
  20. 20.
    F. N. Rabinovich, “Application of fiber reinforced concretes in the structures of industrial buildings,” in: Fiber Reinforced Concrete and Its Application in Building: Proc. NIIZhB, Moscow (1979), pp. 27–38.Google Scholar
  21. 21.
    F. N. Rabinovich, “Some problems of the dispersion reinforcement of concrete materials with glass fiber,” in: Dispersion Reinforced Concretes and Structures from Them: Abstr. Pap. Republican Conf. [in Russian], Riga (1975), pp. 68–72.Google Scholar
  22. 22.
    F. N. Rabinovich and L. G. Kurbatov, “Application of steel fiber concrete in the designs of engineering structures,” Beton Zhelezobeton, No. 12, 22–25 (1984).Google Scholar
  23. 23.
    S. Kordts, “Selbstverdichtender Beton,” in: Forschungskolloguium des DafStb, Düsseldorf (2002), pp. 109–120.Google Scholar
  24. 24.
    P. Kleingelhofer, “Noue Betouverflissiger auf Basis Polycarboxylat,“ in: II Proc. 13., Bd. 1, Ybasil. Weimar (1997), pp. 491–495.Google Scholar
  25. 25.
    A. Magumdar, Glass Fiber Reinforced Cement, London (1991).Google Scholar
  26. 26.
    J. N. Kar and A. K. Pal, “Strength of fiber-reinforced concrete,” Proc. ASCE, J. Structural Division, 98, No. 5, 1053–1068 (1972).Google Scholar
  27. 27.
    X. She and Ya. Xue, “Summary of behaviour of steel fiber reinforced concrete,” in: Іnternat. Conf. Electric Technol. Civil Eng. (ICETCE 2011) (Apr. 22–24, 2011), Lushan (2011), pp. 800–803.Google Scholar
  28. 28.
    P. Prasath and D. Silambarasan, “An experimental investigation on flexural behaviour of stainless steel fiber reinforced concrete beam elements,” in: Internat. Conf. Current Trends Eng. Technol. (July 3, 2013), IEEE, Coimbatore (2013), pp. 146–152.Google Scholar
  29. 29.
    P. S. Song and S. Hwang, “Mechanical properties of high-strength steel fiber-reinforced concrete,” Construct. Build. Mater., 18, No. 9, 669–673 (2004).CrossRefGoogle Scholar
  30. 30.
    A. Orbe, R. Losada, E. Rojí, J. Cuadrado, and A. Maturana, “The prediction of bending strengths in SFRSCC using computational fluid dynamics (CFD),” Сonstruct. Build. Mater., 66, 587–596 (2004).CrossRefGoogle Scholar
  31. 31.
    S.-Ch. Lee, J.-H. Oh, and J.-Y. Cho, “Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers,” Materials (Basel), No. 8 (4), 1442–1458 (2015).CrossRefGoogle Scholar
  32. 32.
    M. Ghasemi, M. R. Ghasemi, and S. R. Mousavi, “Investigating the effects of maximum aggregate size on self-compacting steel fiber reinforced concrete fracture parameters,” Сonstruct. Build. Mater., 162, 674–682 (2017).CrossRefGoogle Scholar
  33. 33.
    S. Karunanithi, “Experimental studies on punching shear and impact resistance of steel fiber reinforced slag based geopolymer concrete,” Adv. Civil Eng., 1–9 (2017).Google Scholar
  34. 34.
    C. D. Atis and O. Karahan, “Properties of steel fiber reinforced fly ash concrete,” Сonstruct. Build. Mater., 23, No. 1, 392–399 (2009).CrossRefGoogle Scholar
  35. 35.
    P. Ramadoss, “Combined effect of silica fume and steel fiber on the splitting tensile strength of high-strength concrete,” Internat. J. Civil Eng., 12, No. 1, 96–103 (2014).Google Scholar
  36. 36.
    M. Nili and A. Afroughsabet, “Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete,” Internat. J. Impact Eng., 37, No. 8, 879–886 (2010).CrossRefGoogle Scholar
  37. 37.
    R. V. Balendran, F. P. Zhou, A. Nadeem, and A. Y. T. Leung, “Influence of steel fibers on strength and ductility of normal and lightweight high strength concrete,” Build Environ., 37, No. 12, 1361–1367 (2002).CrossRefGoogle Scholar
  38. 38.
    J. Gao, “On the application of polypropylene fiber reinforced concrete in the bridge deck maintenance,” in: Internat. Conf. Computer Distr. Contr. Intellig. Environ. Monitor., Zhangjiajie, Hunan China (2012), pp. 460–464.Google Scholar
  39. 39.
    M. Zhang, “Double-K fracture analysis on polypropylene fiber reinforced concrete beams with standard three-point bending,” in: Internat. Conf. Electric Technol. Civil Eng. (ICETCE 2011) (Apr. 22–24, 2011), Lushan (2011), pp. 242–245.Google Scholar
  40. 40.
    H. Fathi, T. Lameie, M. Maleki, and R. Yazdani , “Simultaneous effects of fiber and glass on the mechanical properties of selfcompacting concrete,” Construct. Build. Mater., 133, 443–449 (2016).CrossRefGoogle Scholar
  41. 41.
    J. Wang and Ye. Zhang, “Experimental research on mechanical and working properties of non-dipping chopped basalt fiber reinforced concrete,” in: IEEE 3rd Internat. Conf. Inform. Manag., Innov. Manag. Ind. Eng., 4 (2010), pp. 635–637.Google Scholar
  42. 42.
    W. Song and J. Yin, “Hybrid effect evaluation of steel fiber and carbon fiber on the performance of the fiber reinforced concrete,” Materials (Basel), No. 9 (8), 704 (2016).CrossRefGoogle Scholar
  43. 43.
    Kh. Mervat, D. R. Mailyan, P. P. Pol’skoii, and A. M. Blyagoz, “Strength and deformability of flexural elements of heavyweight concrete reinforced with glass plastic and steel,” Nov. Tekhnol., No. 4, 147–152 (2012).Google Scholar
  44. 44.
    Y. Liu, L. Tang, and X. Huang, “Damage behavior of steel fiber reinforced and polymer modified concrete under impact loading,” Key Eng. Mater., 543–548 (2007).Google Scholar
  45. 45.
    S. J. Pantazopoulou and M. Zanganeh, “Triaxial tests of fiber-reinforced concrete,” J. Mater. Civil Eng., 13, No. 5, 340–348 (2001).CrossRefGoogle Scholar
  46. 46.
    A. Tareq, B. H. Noamana, and A. B. H. Md. Akil, “The effect of combination between crumb rubber and steel fiber on impact energy of concrete beams,” Procedia Eng., 125, 825–831 (2015).CrossRefGoogle Scholar
  47. 47.
    B. Paulo, A. Joaquim, and A. A. Paulo, “Fatigue bahavior of fiber-reinforced concrete in compression,” Сemconcomp Cement & Concr. Compos., 24, 211–217 (2002).CrossRefGoogle Scholar
  48. 48.
    W. Yin and T. C. Hsu, “Fatigue behaviour of steel fiber reinforced concrete in uniaxial and biaxial compression,” ACI Mater. J., 92, 71–81 (1995).Google Scholar
  49. 49.
    R. Xu, Y. Zha, J. Bai, and M. Bai, “Experimental study on steel fiber reinforced concrete columns under low cyclic,” in: Second Internat. Conf. Mech. Automation Contr. Eng. (MACE 2012) (July 15–17), Inner Mongolia, IEEE (2011), pp. 3144–3147.Google Scholar
  50. 50.
    B. C. Paulo, J. A. Figueiras, and A. A. Paulo, “Pereira Fatigue model for steel fiber-reinforced concrete,” ICCM-12, 756–765 (1999).Google Scholar
  51. 51.
    S. Karthik, M. Kalaivani, and P. Easwaran, “Fatigue behaviour of steel fiber reinforced concrete – a review,” Internat. Research J. Eng. Technol., 3, No. 4, 2064–2068 (2016).Google Scholar
  52. 52.
    Yu. V. Pukharenko, Scientific and Practical Foundations of the Formation of Structure and Properties of Fiber Concretes [in Russian], Doctoral Degree Thesis (Eng.), St.-Petersburg (2005).Google Scholar
  53. 53.
    V. P. Sylovanyuk, R. Ya. Yukhym, А. E. Lisnichuk, and N. А. Ivantyshyn, “Computational model of the tensile strength of fiberreinforced concrete,” Fiz.-Khim. Mekh. Mater., 51, No. 3, 39–45 (2015); English translation: Mater. Sci., 51, No. 3, 340–347 (2015).Google Scholar
  54. 54.
    D. A. Panteleev, Polyreinforced Fiber Concretes with Using Amorphous Metallic Fiber [in Russian], Candidate-Degree Thesis (Eng.), St.-Petersburg (2016).Google Scholar
  55. 55.
    І. А. Andreev, Process of the Vibroextrusion of Fiber Concrete [in Ukrainian], NTU ”Kyiv Politekh. Inst.,” Kyiv (2016).Google Scholar
  56. 56.
    І. А. Andreev and O. I. Tsarenko, “Vibratory impact extrusion of fiber concrete,” Khim. Prom. Ukrainy, No. 2, 46–48 (2001).Google Scholar
  57. 57.
    І. А. Andreev and S. S. Valuiskova, “Fiber concrete. Improvement of the process of production of a thin layer of cement-sand solution in the course of vibroextrusion,” Khim. Prom. Ukrainy, No. 4 (111), 27–29 (2012).Google Scholar
  58. 58.
    І. А. Andreev and M. T. Dovzhyk, “Orientation of disperse reinforcement in the course of flow of fiber-concrete mixture in the channels of bunker of vibroextruder,” Visn. NTUU ”Kyiv Politekh. Inst.,” Ser. “Khim. Inzh., Ekol. Resursozber.,” No. 1 (3), 29–32 (2009).Google Scholar
  59. 59.
    І. А. Andreev and V. V. Furmans’ka, “Efficiency of dispersed reinforcement in the vibroextrusion of fiber concrete,” in: Visn. NTUU ”Kyiv Politekh. Inst.,” Ser. “Khim. Inzh., Ekol. Resursozber.,” No. 1 (2008), pp. 19–22.Google Scholar
  60. 60.
    І. А. Andreev and N. V. Poltorats’ka, “Vibroextrusion of fiber-concrete products with transverse orientation of disperse reinforcement,” Keramika: Nauka Zhyzn’, No. 4 (10), 56–63 (2010).Google Scholar
  61. 61.
    І. А. Andreev and N. V. Komkina, “Orientation of disperse reinforcement at the vibroextrusion of fiber concrete in a round annular channel,” Keramika: Nauka Zhyzn, No. 3 (13), 43–49 (2011).Google Scholar
  62. 62.
    L. G. Voronin, І. А. Andreev and N. V. Komkina, “Fiber-concrete pipes. Process of vibroextrusion formation,” Khim. Prom. Ukrainy, No. 6 (107), 38–40 (2011).Google Scholar
  63. 63.
    E. K. Opbul and S. S. Sedip, “Strength and crack resistance of flexural elements of dispersion reinforced concrete with high-strength reinforcement without preliminary stresses,” Vestn. Tuva Gos. Univ., Tekh. Fiz.-Mat. Nauki, No. 3, 43–54 (2014).Google Scholar
  64. 64.
    A. N. Kulikov, Experimental and Theoretical Investigations of the Properties of Fiber Concrete under Gradientless Stressed State in Short-Term Tests [in Russian], Author’ Abstr. Candidate-Degree Thesis (Eng.), Leningrad (1974).Google Scholar
  65. 65.
    V. G. Khozin, A. R. Gizdatullin, and A. N. Kuklin, “Specific features of the deformation and fracture of concrete beams with composite reinforcement of different diameters,” in: Fracture Mechanics of Building Materials and Structures [in Russian] (2014), pp. 354–361.Google Scholar
  66. 66.
    D. A. Il’in, Composite Reinforcement Based on Glass and Carbon Fibers for Concrete Structures [in Russian], Candidate-Degree Thesis (Eng.), Moscow (2017).Google Scholar
  67. 67.
    B. Westerberg, “Some questions concerning the design of steel fiber concrete slabs on ground.” in: Workshop Proc. Nordic Miniseminar, Stockholm (2001), pp. 11–22.Google Scholar
  68. 68.
    V. I. Morozov, Yu. V. Pukharenko, and A. O. Khehai, “Modeling of microcrack initiation in fiber concrete by the methods of fracture mechanics,” Such. Prom. Tsyv. Bud., 7, No. 3, 125–134 (2011).Google Scholar
  69. 69.
    A. Orbe, J. Cuadrado, R. Losada, and E. Rojí, “Framework for the design and analysis of steel fiber reinforced self-compacting concrete structures,” Constr. Build. Mater., 35, 676– 686 (2012).CrossRefGoogle Scholar
  70. 70.
    A. Orbe, J. Cuadrado, R. Losada, and E. Rojí, “Calibration patterns for predicting residual strengths of steel fiber reinforced concrete (SFRC),” Composites, Part B: Engineering,” 58, 408–417 (2014).CrossRefGoogle Scholar
  71. 71.
    M. Faifer, R. Ottoboni, S. Toscani and L. Ferrara, “An improved method for steel fiber reinforced concrete analysis,” Internat. Instrum. Measur. Technol. Conf. Proc. (May 12–16, 2012), IEEE, Graz (2012), pp. 1896–1901.Google Scholar
  72. 72.
    M. Faifer and, R. Ottoboni, “Nondestructive testing of steel-fiber-reinforced concrete using a magnetic approach,” IEEE Trans. Instrum. Measur., 60, No. 5, 1709–1717 (2011).CrossRefGoogle Scholar
  73. 73.
    P. Juan-García, J. M. Torrents, R. D. López-Carreño, and S. H. P. Cavalaro, “Influence of fiber properties on the inductive method for the steel-fiber-reinforced concrete characterization,” IEEE Trans. Instrum. Measur., 65, No. 8, 1937–1944 (2016).CrossRefGoogle Scholar
  74. 74.
    J. Karlovšek, N. Wagner, and A. Scheuermann, “Frequency-dependant dielectric parameters of steel fiber reinforced concrete,” in: 14th Internat. Conf. Ground Penetrating Radar (GPR) (June 4–8, 2012), IEEE, Shanghai (2012) pp. 510–516.Google Scholar
  75. 75.
    J. M. Torrents, A. Blanco, P. Pujadas, A. Aguado, P. J. García, and M. A. Sánchez, “Inductive method for assessing the amount and orientation of steel fibers in concrete,” Mater. Struct., 45, 1577–1592 (2012).CrossRefGoogle Scholar
  76. 76.
    M. Sanchez, I. Peña, A. Arrinda, D. de la Vega, D. Guerra, and U. Gil, “UHF antenna design for the estimation of fiber density of steel fiber reinforced concrete,” in: 9th Europ. Conf. Antennas Propag. (EuCAP) (Apr. 13–17, 2015), IEEE, Lisbon (2015), pp. 1–4.Google Scholar
  77. 77.
    G. Roqueta, L. Jofre, J. Romeu, and S. Blanch, “Broadband propagative microwave imaging of steel fiber reinforced concrete wall structures,” IEEE Trans. Instrum. Measur., 59, No. 12, 3102–3110 (2010).CrossRefGoogle Scholar
  78. 78.
    G. Roqueta, J. Romeu, and L. Jofre, “Time domain reflection technique for microwave non destructive testing of steel fiber reinforced concrete,” in: IEEE Proc. Fourth Europ. Conf. Antennas Propag. (EuCAP), Barcelona (2010), pp. 1–5.Google Scholar
  79. 79.
    M. Faifer, R. Ottoboni, and S. Toscani, “A compensated magnetic probe for steel fiber reinforced concrete monitoring,” in: IEEE Kona: SENSORS (2010), pp. 698–703.Google Scholar
  80. 80.
    J. P. Chiverton, I. Olubisi, S. J. Barnett, and T. Parry, “Multiscale Shannon’s entropy modeling of orientation and distance in steel fiber micro-tomography data,” IEEE Trans. Image Process., 26, No. 11, 5284–5297 (2017).CrossRefGoogle Scholar
  81. 81.
    J. Štoller and P. Dvořák, “Field tests of high performance fiber reinforced concrete slabs: Impact of contact and distant explosions,” in: Internat. Conf Military Technol. (ICMT) (May 19–21, 2015), IEEE, Brno (2015), pp. 1–5.Google Scholar
  82. 82.
    Yu. V. Pukharenko, V. Yu. Golubev, and A. O. Khegai, “On the assessment of crack resistance of steel fiber concrete by the ultrasonic method,” Prom. Grazhd. Stroit., No. 9, 50–51 (2009).Google Scholar
  83. 83.
    E. Özgür, M. Khaled, and Ç. Tahir, “Effects of silica fume and steel fibers on some mechanical properties of high-strength fiberreinforced concrete,” J. Test. Evaluat., 27, No. 6, 380–387 (1999).CrossRefGoogle Scholar
  84. 84.
    А. E. Andreikiv and N. V. Lisak, Acoustic Emission Methods in the Investigations of Fracture Processes [in Russian], Naukova Dumka, Kiev (1989).Google Scholar
  85. 85.
    V. R. Skal’s’kyi and O. E. Andreikiv, Assessment of the Volume Damage of Materials by the Acoustic Emission Method [in Ukrainian], Vyd. Tsentr Franko LNU, Lviv (2006).Google Scholar
  86. 86.
    O. P. Sunak and P. O. Sunak, Assessment of the Reliability of Steel-Fiber Concrete Elements [in Ukrainian], LDTU, Luts’k (2001).Google Scholar
  87. 87.
    E. M. Babych and S. Ya. Drobyshynets’, Operation and Calculation of Flexural Steel-Fiber Concrete Elements [in Ukrainian], LNTU, Luts’k (2012).Google Scholar
  88. 88.
    O. V. Andriichuk and E. M. Babych, Steel-Fiber Concrete Nonpressure Pipes [in Ukrainian], LNTU, Luts’k (2012).Google Scholar
  89. 89.
    S. О. Uzhehov, О. A. Uzhehova, R. V. Pasichnyk, O. V. Andriichuk, and S. Ya. Drobyshynets’, “Calculation of steel-fiber concrete flexural elements by the strength of normal sections,” Such. Tekhnol. Met. Rozrakh. Bud., No. 3, 179–184 (2015).Google Scholar
  90. 90.
    DSTU-N B V.2.6-ХХ: 20ХХ. Structures of Houses and Buildings. Dispersion Reinforced Concrete Structures. Recommendations on Designing and Performance of Works [in Ukrainian], Min. Reg. Rozv. Bud. Ukrainy, Kyiv (2011).Google Scholar
  91. 91.
    O. V. Andriichuk and O. H. Hrechko, “Basic aspects of the calculation and designing of steel-fiber concrete structures,” Such. Tekhnol. Met. Rozrakh. Bud., No. 3, 3–10 (2015).Google Scholar
  92. 92.
    Deutscher Ausschuss fur Stahlbeton (DAfStb), Richtlinie Stahlfaserbeton, Entwurfstand (2008).Google Scholar
  93. 93.
    O. E. Ahdreikiv, I. I. Luchko, and T. V. Hembara, “Method of determining bending stress intensity coefficients for cracked ferroconcrete components,” Fiz.-Khim. Mekh. Mater., No. 3, 104–110 (1992); English translation: Soviet Mater. Sci., 28, No. 3, 299–304 (1992).Google Scholar
  94. 94.
    O. E. Andreikiv, I. I. Luchko, and T. V. Hembara, Calculation of Reinforced Concrete Beam Elements by the Methods of Fracture Mechanics [in Ukrainian], Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv (1993).Google Scholar
  95. 95.
    V. P. Sylovanyuk, A. E. Lisnichuk, R. Ya. Yukhym, and N. A. Ivantyshyn, “Prediction of the strength of fibrous concrete in compression,” Fiz.-Khim. Mekh. Mater., 52, No. 3, 35–41 (2016); English translation: Mater. Sci., 52, No. 3, 330–338 (2016).Google Scholar
  96. 96.
    V. I. Marukha, V. V. Panasyuk, and V. P. Sylovanyuk, Injection Technologies for Repair of Damaged Concrete, Springer, Netherlands (2014).Google Scholar
  97. 97.
    V. P. Sylovanyuk, R. Ya. Yukhym, N. A. Ivantyshyn, and A. E. Lisnichuk, “Prediction of the crack resistance of cement stone and fibrous concrete,” Fiz.-Khim. Mekh. Mater., 51, No. 4, 120–124 (2015); English translation: Mater. Sci., 51, No. 4, 570–575 (2016).Google Scholar
  98. 98.
    S. I. Solodkyi and Yu. V. Turba, “Experimental-static modeling of the crack resistance of concretes reinforced with polypropylene fiber,” Naukovi Notatky, No. 46, 512–515 (2014).Google Scholar
  99. 99.
    A. G. Yur’ev, L. A. Panchenko, and I. R. Serykh, “New approaches to the formation of building structures based on carbon nanosystems,” Vestn. Shukhov BGTU, No. 3, 19–20 (2009).Google Scholar
  100. 100.
    V. G. Khozin, A. A. Piskunov, A. R. Gizdatullin, and A. N. Kuklin, “Adhesion of polymer-composite reinforcement with cement concrete,” Izv. KGASU, No. 1 (23), 214–220 (2013).Google Scholar
  101. 101.
    A. V. Benin and S. G. Semenov, “Experimental investigations of the adhesion between composite reinforcement and plane coiling with concrete,” Prom. Grazhd. Stroit., No. 9, 74–76 (2013).Google Scholar
  102. 102.
    A. V. Kokovtseva, A. S. Semenov, S. G. Semenov, and A. V. Benin, “Modeling of the process of drawing out of glass-plastic reinforcement from a concrete block,” in: Proc. Conf. Internat. Participation “XIII Week of Science in St.-Petersburg State Polytechnic Univ.” (2013), pp. 182–184.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • О. E. Andreikiv
    • 1
    Email author
  • V. R. Skal’s’kyi
    • 2
  • I. Ya. Dolins’ka
    • 2
  • O. К. Raiter
    • 2
  1. 1.I. Franko Lviv National UniversityLvivUkraine
  2. 2.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations