Advertisement

Materials Science

, Volume 54, Issue 2, pp 250–259 | Cite as

Influence of the Time of Increase in Contact Pressure in the Course of Braking on the Temperature of a Pad–Disc Tribosystem

  • K. Topczewska
Article
  • 6 Downloads

We obtain exact solutions of the thermal problems of friction for a pad–disc tribosystem with regard for the time profiles of specific friction power corresponding to the exponential and linear increase in pressure during braking. We study the influence of time of attainment of the nominal value of contact pressure on temperature in the contact zone of a cermet pad with a cast-iron disc. It is shown that the maximal temperature linearly decreases as the time of attainment of the nominal value of contact pressure increases. At the same time, the time of attainment of this temperature increases.

Keywords

temperature friction heating braking pressure friction power 

References

  1. 1.
    A. V. Chichinadze, É. D. Braun, A. G. Ginzburg, and Z. V. Ignat’eva, Numerical Analyses, Tests, and Selection of Friction Couples [in Russian], Nauka, Moscow (1979).Google Scholar
  2. 2.
    O. Evtushenko, M. Kuciej, and Ol. Evtushenko, “Modeling of friction heating in the process of braking,” Fiz.-Khim. Mekh. Mater., 48, No. 5, 27–33 (2012); English translation: Mater. Sci., 48, No. 5, 582–590 (2013).Google Scholar
  3. 3.
    A. A. Yevtushenko and M. Kuciej, “One-dimensional thermal problem of friction during braking: The history of development and actual state,” Int. J. Heat Mass Trans., 55, No. 15–16, 4118–4153 (2012.Google Scholar
  4. 4.
    O. Evtushenko, M. Kuciej, and P. Grzes, “Numerical and analytic solutions of the thermal problem of friction in the course of braking,” Fiz.-Khim. Mekh. Mater., 47, No. 6, 59–64 (2011); English translation: Mater. Sci., 47, No. 6, 783–789 (2012).Google Scholar
  5. 5.
    A. A. Yevtushenko and P. Grzes, “The FEM-modeling of the friction heating phenomenon in the pad/disc tribosystem (a review),” Num. Heat Trans., Part A: Applications, 58, No. 3, 207–226 (2010).Google Scholar
  6. 6.
    K. Topczewska, “Influence of the friction power on temperature in the process of braking,” Fiz.-Khim. Mekh. Mater., 53, No. 2, 96–101 (2017); English translation: Mater. Sci., 53, No. 2, 235–242 (2017).Google Scholar
  7. 7.
    K. Topczewska, “Influence of the friction power on temperature stresses in the course of single braking,” Fiz.-Khim. Mekh. Mater., 53, No. 5, 66–72 (2017).Google Scholar
  8. 8.
    M. Kuciej, Analytical Models of Transient Friction Heating, Oficyna Wydawnicza Politechniki Białostockiej, Białystok (2012).Google Scholar
  9. 9.
    A. A. Evtushenko and E. G. Ivanyk, “Formulas for calculating mean temperature and wear of friction surfaces in braking,” Friction Wear, 20, No. 3, 257–264 (1999).Google Scholar
  10. 10.
    A. A. Yevtushenko, E. G. Ivanyk, and O. O. Yevtushenko, “Exact formulae for determination of the mean temperature and wear during braking,” Heat Mass Transfer, 35, No. 2, 163–169 (1999).CrossRefGoogle Scholar
  11. 11.
    A. A. Yevtushenko, E. G. Ivanyk, and O. O. Yevtushenko, “Influence of the pressure fluctuations on the temperature in pad/disc tribosystem,” Int. Comm. Heat Mass Trans., 37, No. 8, 978–983 (2010).CrossRefGoogle Scholar
  12. 12.
    M. Kuciej, “Accounting changes of pressure in time in one-dimensional modeling the process of friction heating of disc brake,” Int. J. Heat Mass Trans., 54, No. 1–3, 468–474 (2011).CrossRefGoogle Scholar
  13. 13.
    W. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: the Art of Scientific Computing, Cambridge Univ. Press, Cambridge (1992).Google Scholar
  14. 14.
    K. Topczewska, “Temperature distribution in a brake disc with variable contact pressure,” Technical Issues, No. 1, 90–95 (2016).Google Scholar
  15. 15.
    A. P. Prudnikov, Yu. A. Bychkov, and O. I. Marichev, Integrals and Series. Elementary Functions [in Russian], Nauka, Moscow (1981).Google Scholar
  16. 16.
    M. Abramowitz and I. A. Stegun (editors), Handbook on Mathematical Functions, Dover, New York (1970).Google Scholar
  17. 17.
    J. R. Barber and C. J. Martin-Moran, “Green’s functions for transient thermoelastic contact problems for the half-plane,” Wear, 79, No. 1, 11–19 (1982).CrossRefGoogle Scholar
  18. 18.
    G. A. G. Fazekas, “Temperature gradients and heat stresses in brake drums,” SAE Trans., 61, No. 1, 279–284 (1953).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Politechnika BiałostockaBiałystokPoland

Personalised recommendations