Advertisement

Materials Science

, Volume 54, Issue 2, pp 240–249 | Cite as

On the Causes of Fractures of Reinforcing Ropes of the Protective Shells of Power-Generating Units of Nuclear Power Plants

  • V. M. Torop
  • M. D. Rabkina
  • O. O. Shtofel’
  • V. V. Usov
  • N. M. Shkatulyak
  • O. S. Savchuk
Article

We determine possible causes of premature failures of typical reinforcing ropes of the protective shells of nuclear power plants with regard for the mechanical parameters of wires, the character of damages to their surfaces, and the fractal dimensions of the fracture surfaces. It is shown that brittle fracture is realized for lower levels of plasticity of the metal of wires and lower degrees of its damage. This type of fracture is characterized by a higher fractal dimension of the fracture surfaces.

Keywords

reinforcing ropes fractures fractography mechanical tests fractal dimension damage 

References

  1. 1.
    K. A. Rapina, “Structures of protective reinforced concrete shells of nuclear installations,” Budiv. Konstr., Issue 78(1), 84–91 (2013).Google Scholar
  2. 2.
    A. N. Bambura, I. R. Sazonova, and V. M. Bogdan, “Numerical analyses of reinforced-concrete stressed protective shells of nuclear power plants,” Stroit., Mater., Mashin., Issue 91, 25–31 (2016).Google Scholar
  3. 3.
    N. V. Savitskii, V. B. Shvets, V. L. Sedin, Yu. A. Kirichek, E. A. Bausk, A. N. Stankevich, A. V. Shavlakov, I. E. Gevtsy, G. G. Farenyuk, and A. N. Bambura, “A system guaranteeing the safety of building structures of nuclear and thermal electric power plants in Ukraine,” Stroit., Mater., Mashin., Issue 65, 531–540 (2012).Google Scholar
  4. 4.
    Report on Aging of Nuclear Power Plant Reinforced Concrete Structures, URL: https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6424/
  5. 5.
    Bonded or Unbonded Technologies for Nuclear Reactor Prestressed Concrete Containments, URL: https://www.oecd-nea.org/nsd/docs/2015/csni-r2015-5.pdf
  6. 6.
    V. S. Ivanova, A. S. Balankin, I. Zh. Bunin, and A. A. Oksagoev, Synergetics and Fractals in Materials Science [in Russian], Nauka, Moscow (1994).Google Scholar
  7. 7.
    V. V. Usov and N. M. Shkatulyak, “Fractal nature of brittle fracture surfaces of metals,” Fiz.-Khim. Mekh. Mater., 41, No. 1, 58–62 (2005); English translation : Mater. Sci., 41, No. 1, 62 – 66 (2005).Google Scholar
  8. 8.
    V. V. Usov, M. D. Rabkina, N. M. Shkatulyak, and T. S. Cherneva, “Fractal dimension of grain boundaries and mechanical properties of the metal of oxygen cylinders,” Fiz.-Khim. Mekh. Mater., 50, No. 4, 117–124 (2014); English translation : Mater. Sci., 50, No. 4, 612–620 (2015).Google Scholar
  9. 9.
    V. V. Usov, E. E. Gopkalo, N. M. Shkatulyak, A. P. Gopkalo, and T. S. Cherneva, “Texture, microstructure, and fractal features of low-cycle fatigue failure of the metal in pipeline welded joints,” Russian Metallurgy (Metally), No. 9, 759–770 (2015).Google Scholar
  10. 10.
    B. Klinkenberg, “A review of methods used to determine the fractal dimension of linear features,” Math. Geology, 26, No. 1, 23–46 (1994).CrossRefGoogle Scholar
  11. 11.
    B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York (1982).Google Scholar
  12. 12.
    H. W. Zhou and H. Xie, “Direct estimation of the fractal dimensions of a fracture surface of rock,” Surf. Review Lett., 10, No. 5, 751–762 (2003).CrossRefGoogle Scholar
  13. 13.
    M. A. Lucas, “Foundations of measurement fractal theory for the fracture mechanics,” in: A. Belov (editor), Applied Fracture Mechanics, Intech, Rijeka (2012), URL: http://www.intechopen.com/books/applied-fracture-mechanics
  14. 14.
    V. Y. Milman, N. A. Stelmashenko, and R. Blumenfeld, “Fracture surfaces: a critical review of fractal studies and a novel morphological analysis of scanning tunneling microscopy measurements,” Progr. Mat. Sci., 38, 425–474 (1994).CrossRefGoogle Scholar
  15. 15.
    P. V. Kuznetsov, I. V. Petrakova, and Yu. Shraiber, “Fractal dimension as a characteristic of the fatigue of metallic polycrystals,” Fiz. Mezomekh., 7, Special Issue No. 1, 389–392 (2004).Google Scholar
  16. 16.
    G. G. Savenkov and B. K. Barakhtin, “Relationship between the fractal dimension of fracture surface and a complex of standard characteristics of the material in tension,” Prikl. Mekh. Tekh. Fiz., 52, No. 6, 177–184 (2011).Google Scholar
  17. 17.
    L. R. Carney and J. J. Mecholsky, “Relationship between fracture toughness and fracture surface fractal dimension in AISI 4340 steel,” Mat. Sci. Appl., 4, No. 4, 258–267 (2013).Google Scholar
  18. 18.
    A. M. Arsenkin, Evaluation of the Inhomogeneity of Toughness of Structural Steels by Measuring the Structure of Fractures by the Methods with Various Dimensions [in Russian], Author’s Abstract of the Candidate Degree Thesis (Engineering), NRTU “MISiS”, Moscow (2009).Google Scholar
  19. 19.
    A. V. Kudrya, È. A. Sokolovskaya, and A. M. Arsenkin, “Efficiency of the use of means of observation with various dimensions for the analysis of the morphology of improved steels,” Deform. Razrush. Mater., No. 1, 38–44 (2010).Google Scholar
  20. 20.
    K. Wiencek, A. Czarskiand, and T. Skowronek, “Fractal characterization of fractured surfaces of a steel containing dispersed Fe3C carbide phase,” Mat. Characteriz., 46, Nos. 2–3, 235–238 (2001).CrossRefGoogle Scholar
  21. 21.
    E. Bouchaud, G. Lapasset, and J. Planes, “Fractal dimension of fractured surfaces: a universal value?” Europhys. Lett., 13, No. 1, 73–79 (1990).CrossRefGoogle Scholar
  22. 22.
    E. Bouchaud, G. Lapasset, and J. Planes, “Statistics of branched fracture surfaces,” Phys. Rev. B, 48, No. 5, 2917–2928 (1993).CrossRefGoogle Scholar
  23. 23.
    E. Bouchaud, “Scaling properties of cracks,” J. Phys.: Condens. Matter, 9, No. 21, 4319–4344 (1997).Google Scholar
  24. 24.
    N. R. Hansen and H. L. Schreyer, “A thermodynamically consistent framework for theories of elastoplasticity coupled with damage,” Int. J. Solids Struct., 31, No. 3, 359–389 (1994).CrossRefGoogle Scholar
  25. 25.
    K. Rashid, A. Al-Rub, and G. Z. Voyiadjis, “On the coupling of anisotropic damage and plasticity models for ductile materials,” Int. J. Solids Struct., 40, No. 11, 2611–2643 (2003).CrossRefGoogle Scholar
  26. 26.
    M. Bobyr, O. Khalimon, and O. Bondarets, “Phenomenological damage models of anisotropic structural materials,” J. Mech. Eng. NTUU “Kyiv Polytechnic Institute”, No. 67, 5–13 (2013).Google Scholar
  27. 27.
  28. 28.
    R. B. Waterhouse, Fretting Corrosion, Pergamon Press, Oxford (1972).Google Scholar
  29. 29.
    J. Lemaitre and J. Dufailly, “Damage measurements,” Eng. Fract. Mech., 28, No. 516, 643–661 (1987).CrossRefGoogle Scholar
  30. 30.
    N. Bonora, A. Ruggiero, D. Gentile, and S. De Meo, “Practical applicability and limitations of the elastic modulus degradation technique for damage measurements in ductile metals,” Strain, 47, 241–254 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. M. Torop
    • 1
  • M. D. Rabkina
    • 1
  • O. O. Shtofel’
    • 1
  • V. V. Usov
    • 2
  • N. M. Shkatulyak
    • 2
  • O. S. Savchuk
    • 2
  1. 1.E. Paton Institute of Electric Welding, Ukrainian National Academy of SciencesKievUkraine
  2. 2.Ushyns’kyi South-Ukrainian National Pedagogical UniversityOdesaUkraine

Personalised recommendations