Materials Science

, Volume 54, Issue 2, pp 230–239 | Cite as

Corrosion- and Hydrogen-Resistance of Heat-Resistant Blade Nickel-Cobalt Alloys

  • A. I. Balyts’kyiEmail author
  • Yu. H. Kvasnyts’ka
  • L. M. Ivas’kevich
  • H. P. Myal’nitsa

We study the influence of gas-turbine fuel ash and gaseous hydrogen on the mass losses caused by longterm corrosion and the mechanical properties of heat-resistant CM-88U-VI, CM-90-VI, and CM-104-VI cast blade materials. It is shown that the level of sulfide-oxide corrosion resistance of the investigated alloys (CM-104-VI > CM-90-VI > CM-88U-VI) correlates with the chromium content. The highest resistance (among similar materials) is exhibited by CM-104-VI alloy, especially for long-term hightemperature tests. The CM-90-VI single-crystal alloy proves to be least sensitive to the action of hydrogen in short-term tensile tests carried out within the temperature range 20–900°C under a pressure of 30 MPa.


heat-resistant nickel-cobalt alloy specific mass losses corrosion hydrogen embrittlement 


  1. 1.
    A. A. Khalatov, K. A. Yushchenko, B. V. Isakov, Yu. Ya. Dashevs’kyi, and A. P. Shevtsov, “Gas-turbine engineering industry in Ukraine: current state and prospects of development,” Visn. Nats. Akad. Nauk Ukr., No. 12, 40–49 (2013).CrossRefGoogle Scholar
  2. 2.
    E. Bancalari, P. Chan, and I. S. Diakunchak, “Advanced hydrogen turbine development,” in: Proc. of 24th Annual Internat. Pittsburgh Coal Conference, University of Pittsburgh, Pittsburgh (2007), pp. 1–16.Google Scholar
  3. 3.
    A. I. Balitskii and V. V. Panasyuk, “Workability assessment of structural steels of power plant units in hydrogen environments,” Probl. Prochn., No. 1, 69–75 (2009); English translation : Strength Mater., 41, No. 1, 52–57 (2009).Google Scholar
  4. 4.
    H. R. Gray, Embrittlement of Nickel-, Cobalt-, and Iron-Base Superalloys by Exposure to Hydrogen, NASA Technical Note TN D-7805, Washington (1975).Google Scholar
  5. 5.
    E. N. Kablov, Cast Blades of Gas-Turbine Engines (Alloys, Technology, Coatings) [in Russian], NSTU “MISiS”, Moscow (2001).Google Scholar
  6. 6.
    C. T. Sims and W. C. Hagel (editors), The Superalloys, Wiley, New York (1972).Google Scholar
  7. 7.
    P. J. Zhoua, J. J. Yub, X. F. Sunb, H. R. Guanb, X. M. Hec, and Z. Q. Hub, “Influence of Y on stress rupture property of a Ni-based superalloy,” Mat. Sci. Eng. A, 551, 236–240 (2012).CrossRefGoogle Scholar
  8. 8.
    Y. Amouyal and D. N. Seidman, “The role of hafnium in the formation of misoriented defects in Ni-based superalloys: an atomprobe tomographic study,” Acta Mater., 59, 3321–3333 (2011).CrossRefGoogle Scholar
  9. 9.
    V. I. Nikitin, Corrosion and Protection of Gas-Turbine Blades [in Russian], Mashinostroenie, Leningrad (1987).Google Scholar
  10. 10.
    V. I. Nikitin, “On the alloying of nickel alloys for the protection against sulfide-oxide corrosion,” Izv. Akad. Nauk SSSR. Met., No. 1, 176–181 (1985).Google Scholar
  11. 11.
    C. T. Sims, N. S. Stoloff, and W. C. Hagel (editors), Superalloys II. High-Temperature Materials for Aerospace and Industrial Power, Wiley, New York (1987).Google Scholar
  12. 12.
    Yu. K. Petrenya and V. I. Nikitin, “Problems in the field of development of corrosion-resistant nickel alloys,” Tyazh. Mashinostr., No. 10, 47 (2002).Google Scholar
  13. 13.
    D. Coutsouradis, P. Felix, H. Fischmeister, L. Habraken, Y. Lindblom, and M. O. Speidel (editors), High Temperature Alloys for Gas Turbines, Applied Sci. Publ., London, 1978.Google Scholar
  14. 14.
    A. S. Gishvarov and M. N. Davydov, “Methods for testing turbine blades for high-temperature gas corrosion,” Vest. Ufim. Gos. Aviats. Tekh. Univ., 19, No. 1 (67), 45–54 (2015).Google Scholar
  15. 15.
    Yu. G. Kvasnitskaya, “Corrosion properties of heat-resistant nickel-based alloys,” Prots. Lit’ya, No. 3, 55–62 (2016).Google Scholar
  16. 16.
    Yu. G. Kvasnitskaya, I. I. Maksyuta, and G. F. Myal’nitsa, “Enhancement of the resistance to high-temperature corrosion of heatresistant alloys as a possibility for the prolongation of the lifetime of gas-turbine engines,” Metal. Lit’e Ukr., No. 5, 3–7 (2016).Google Scholar
  17. 17.
    A. I. Balitskii and L. M. Ivas'kevich, “Mеtаllurgical methods of improvement of hydrogen brittleness and crack resistance of heatresistant nickel alloy,” Sovr. Èlektrometallurg., No. 3, 43–50 (2017); English translation : Adv. Electrometall., No. 3 (9), 43–50 (2017).Google Scholar
  18. 18.
    V. I. Tkachev, V. I. Kholodnyi, and L. M. Ivaskevich, “Hydrogen embrittlement of nickel alloys in the deformed, cast, and powder states,” Materialovedenie, No. 8, 46–49 (2005).Google Scholar
  19. 19.
    V. I. Tkachev, L. M. Ivaskevich, and I. M. Levina, “Distinctive features of hydrogen degradation of heat-resistant alloys based on nickel,” Fiz.-Khim. Mekh. Mater., 33, No. 4, 115–120 (1997); English translation : Mater. Sci., 33, No. 4, 524–531 (1997).Google Scholar
  20. 20.
    Z. Zhang, G. Obasi, R. Morana, and M. Preuss, “In-situ observation of hydrogen-induced crack initiation in a nickel-based superalloy,” Scripta Mat., 140, 40–44 (2017).CrossRefGoogle Scholar
  21. 21.
    A. I. Balitskii, L. M. Ivaskevich, and V. M. Mochulskyi, “Crack resistance of age-hardening Fe–Ni alloys in gaseous hydrogen,” in: Proc. of the 18th Europ. Conf. on Fracture. Fracture of Materials and Structures from Micro to Macro Scale (Dresden, Germany, 30.08–03.09, 2010), Paper No. 80, Dresden, Germany (2010), pp. 1– 8.Google Scholar
  22. 22.
    A. I. Balitskii, L. M. Ivaskevich, V. M. Mochulskyi, and O. M. Holiyan, “Influence of hydrogen on the crack resistance of 10Kh15N27T3V2MR steel,” Fiz.-Khim. Mekh. Mater., 45, No. 2, 102–110 (2009); English translation : Mater. Sci., 45, No. 2, 258–267 (2009).Google Scholar
  23. 23.
    A. W. Thompson and I. M. Bernstein, “The role of metallurgical variables in hydrogen-assisted environmental fracture,” in: M. G. Fontara and R. Staehle (editors), Advances in Corrosion Science and Technology, Plenum Press, New York (1980), p. 53–175.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. I. Balyts’kyi
    • 1
    Email author
  • Yu. H. Kvasnyts’ka
    • 2
  • L. M. Ivas’kevich
    • 1
  • H. P. Myal’nitsa
    • 3
  1. 1.Karpenko Physicomechanical Institute, Ukrainian National Academy of SciencesLvivUkraine
  2. 2.Physico-Technological Institute of Metals and Alloys, Ukrainian National Academy SciencesKievUkraine
  3. 3.“Zorya–Mashproekt” Scientific and Production Complex of Gas-Turbine BuildingMykolaivUkraine

Personalised recommendations