Advertisement

Materials Science

, Volume 54, Issue 2, pp 209–214 | Cite as

Evaluation of the Crack Resistance of Structural Materials for Mixed Macromechanisms of Fracture

  • W.-G. Song
  • Ya. L. Ivanyts’kyi
  • P. S. Kun’
  • V. M. Chyrva
Article

The problem of limit equilibrium of an elastoplastic body weakened by a crack is considered in the case of simultaneous realization of three macromechanisms of fracture. On the basis of the energy approach and some hypotheses, the criterion equations are proposed for the case of mixed fracture. The comparison of the theoretical and experimental values is presented.

Keywords

mixed macromechanism of fracture energy criterion limiting state 

References

  1. 1.
    V. V. Panasyuk, A. E. Andreikiv, and V. Z. Parton, Fracture Mechanics and Strength of Materials. A Handbook [in Russian], Vol. 1: Fundamentals of Fracture Mechanics [in Russian], Naukova Dumka, Kiev (1988).Google Scholar
  2. 2.
    Ya. L. Ivanyts’kyi and P. S. Kun’, Crack Resistance of Structural Materials under Complex Loading [in Ukrainian], Spolom, Lviv (2013).Google Scholar
  3. 3.
    Yu. Du, Yu. V. Mol’kov, Т. М. Lenkovs’kyi, and R. А. Koval’chuk, “Analysis of the stress-strain state of the process zone of a plate with central crack under biaxial loading,” Fiz.-Khim. Mekh. Mater., 53, No. 1, 78–83 (2017); English translation : Mater. Sci., 53, No. 1, 86–92 (2017).Google Scholar
  4. 4.
    R. Ya. Kosarevych, O. Z. Student, Ya. D. Onyshchak, A. D. Markov, I. V. Ripei, V. P. Rusyn, and H. M. Nykyforchyn, “Estimation of damage to the collector of a water economizer by thermal fatigue cracks,” Fiz.-Khim. Mekh. Mater., 40, No. 1, 109–114 (2004); English translation : Mater. Sci., 40, No. 1, 132–138 (2004).Google Scholar
  5. 5.
    V. V. Panasyuk, Mechanics of Quasibrittle Fracture of Materials [in Russian], Naukova Dumka, Kiev (1991).Google Scholar
  6. 6.
    T. Yokobori, The Strength, Fracture and Fatigue of Materials, Noordhoff, Groningen (1965).Google Scholar
  7. 7.
    A. E. Andreikiv, Three-Dimensional Problems of the Theory of Cracks [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
  8. 8.
    V. V. Panasyuk, Limiting Equilibrium of Brittle Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1968).Google Scholar
  9. 9.
    R. V. Rachkevych, A. S. Velychkovych, V. V. Hrytsiv, A. A. Kozlov, and I. O. Rachkevych, “Stress-strain state of a drill string in the curvilinear shaft of the well with hollows in the walls,” Zbirn. Nauk. Prats. Nats. Girn. Univ., No. 37, 124–134 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • W.-G. Song
    • 1
  • Ya. L. Ivanyts’kyi
    • 2
  • P. S. Kun’
    • 2
  • V. M. Chyrva
    • 3
  1. 1.School of Computer ScienceYangtze UniversityJingzhouChina
  2. 2.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine
  3. 3.“Prydniprov’ya,” LLCLvivUkraine

Personalised recommendations