Advertisement

Materials Science

, Volume 54, Issue 2, pp 175–183 | Cite as

A Method for Processing and Analysis of the Images of a Network of Thermal Fatigue Cracks on the Surfaces of Rollers of Continuous Casting Machines

  • І. V. Konovalenko
  • P. О. Marushchak
  • О. N. Kuz’
Article
  • 11 Downloads

We propose an algorithm for the analysis of thermal fatigue cracks on the surfaces of rollers of continuous casting machines that does not require adaptation to images of various types and individual choice of parameters. For this purpose, the images are analyzed for a sufficiently large subset of the sets of values of the parameters. The result of this classification is regarded as a fuzzy set with a membership function of each element equal to the number of sets of parameters responsible for the detection of this element as a component of the frame of the damage grid.

Keywords

image processing classification fuzzy sets thermal fatigue cracks self-focusing 

References

  1. 1.
    O. Yu. Povstyanoi, V. D. Rud’, Yu. A. Mel’nyk, and N. Yu. Imbirovych, “Analysis of the contemporary methods of determination of the structure and surface topology of materials,” Tekh. Diagnost. Nerazrush. Kontr., No. 2, 37–42 (2014).Google Scholar
  2. 2.
    S. V. Panin, P. O. Maruschak, P. S. Lyubutin, I. V. Konovalenko, and B. B. Ovechkin, “Application of meso- and fracture mechanics to material affected by a network of thermal fatigue cracks,” Int. J. Fatigue, 76, 33–38 (2014).CrossRefGoogle Scholar
  3. 3.
    R. J. Kosarevych, B. P. Rusyn, V. V. Korniy, and T. I. Kerod, “Image segmentation based on the evaluation of the tendency of image elements to form cluster with the help of point field characteristics,” Cybern. & Syst. Anal., 51, 704–713 (2015).CrossRefGoogle Scholar
  4. 4.
    B. E. Kapustiy, B. P. Rusyn, and V. A. Tayanov, “Peculiarities of application of statistical detection criteria for problem of pattern recognition,” J. Automat. & Inform. Sci., 37, No. 2, 30–36 (2005)CrossRefGoogle Scholar
  5. 5.
    R. Ya. Kosarevych, O. Z. Student, L. M. Svirs’ka, B. P. Rusyn, and H. M. Nykyforchyn, “Computer analysis of characteristic elements of fractographic images,” Fiz.-Khim. Mekh. Mater., 48, No. 4, 53–60 (2012); English translation: Mater. Sci., 48, No. 4, 474–481 (2013).Google Scholar
  6. 6.
    M. Kobasyar and B. Rusyn, “The Radon transform application for accurate and efficient curve,” in: Proc. Internat. Conf. “Modern Problems of Radio Engineering, Telecommunications, and Computer Science” (TCSET-2004) [in Ukrainian], Lviv–Slavs’ke (2004), pp. 233–234.Google Scholar
  7. 7.
    P. O. Marushchak, O. P. Yasnii, and I. V. Konovalenko, “Prediction of damages of the surface of rollers of continuous casting machine caused by cracking,” Visn. Donbas. Derzh. Mashynobud. Akad., 9, No. 3, 163–168 (2007).Google Scholar
  8. 8.
    M. H. Karimi and D. Asemani, “Surface defect detection in tiling Industries using digital image processing methods: Analysis and evaluation,” ISA Transact., 53, 834–844 (2014).CrossRefGoogle Scholar
  9. 9.
    W. Zhang, Zh. Zhang, D. Qi, and Yu. Liu, “Automatic crack detection and classification method for subway tunnel safety monitoring,” Sensors, 14, No. 10, 19307–19328 (2014).CrossRefGoogle Scholar
  10. 10.
    T. Yamaguchi, S. Nakamura, R. Saegusa, and S. Hashimoto, “Image-based crack detection for real concrete surfaces,” IEEJ Trans. Elec. Electron. Eng., 3, 128–135 (2008).CrossRefGoogle Scholar
  11. 11.
    B. Xu and Ya. Huang, Development of an Automatic Pavement Surface Distress Inspection System, Center for Transport. Research at the Univ. Texas at Austin (2005).Google Scholar
  12. 12.
    V. Malekian, R. Amirfattahi, M. Rezaeian, A. Aghaei, and P. Rahimi, “Automatic detection and localization of surface cracks in continuously cast hot steel slabs using digital image analysis techniques,” Int. J. ISSI, 9, 30–40 (2012).Google Scholar
  13. 13.
    P. Prasanna, K. Dana, N. Gucunski, and B. Basily, “Computer-vision based crack detection and analysis,” in: SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring, Int. Soc. for Optics and Photonics, San Diego, USA (2012), pp. 834542–834542-6.Google Scholar
  14. 14.
    P. V. Yasnii, I. V. Konovalenko and P. O. Marushchak, “On the investigation of geometric parameters of a grid of thermal fatigue cracks,” Visn. Dnipropetr. Nats. Univ., Ser. “Mechanics,” 16, No. 5, 182–189 (2008).Google Scholar
  15. 15.
    I. V. Konovalenko and P. O. Maruschak, “Error analysis of algorithm for identifying thermal fatigue cracks,” Optoelectron. Instrum. & Data Proc., 47, No. 4, 49–57 (2011).Google Scholar
  16. 16.
    P. Maruschak, V. Gliha, I. Konovalenko, T. Vuherer, and S. Panin, “Physical regularities in the cracking of nanocoatings and a method for an automated determination of the crack-network parameters,” Mater. Tech., 46, No. 5, 525–529 (2012).Google Scholar
  17. 17.
    D. Bradley and G. Roth, “Adaptive thresholding using the integral image,” J. Graphics Tools, 12, No. 2, 13–21 (2007).CrossRefGoogle Scholar
  18. 18.
    I. V. Konovalenko, O. A. Pastukh, and P. O. Marushchak, “Using fuzzy sets to estimate the geometric parameters of surface damage,” Optoelectron. Instrum. & Data Proc., 52, No. 4, 319–327 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • І. V. Konovalenko
    • 1
  • P. О. Marushchak
    • 1
  • О. N. Kuz’
    • 2
  1. 1.Pulyui Ternopil’ National Technical UniversityTernopil’Ukraine
  2. 2.“L’vivs’ka Politekhnika National UniversityLvivUkraine

Personalised recommendations