Advertisement

Materials Science

, Volume 53, Issue 6, pp 751–760 | Cite as

Quantum-Chemical Analysis of the Mechanism of Degradation of Binary Platinum Nanoclusters with Sulfur-Containing Compounds

  • S. А. Kornii
  • V. I. Pokhmurs’kyi
  • N. R. Chervins’ka
Article
  • 42 Downloads

We propose a quantum-chemical model of poisoning of binary Pt42Me13 platinum nanoclusters (where Me is a transition metal, namely, Fe, Co, or Ni) with core-shell structure by hydrogen sulfide and sulfur dioxide in media of low-temperature fuel cells. This model is based on the evaluation of the adsorption characteristics of interaction of H2S and SO2 molecules with the surfaces of nanoclusters. It is shown that their susceptibility to the formation of strong chemisorption bonds with H2S and SO2 molecules depends on the type of nanocluster core and the sites of adsorption on their surfaces. By using the quantum-chemical method of density functional, we establish the regularities of influence of the cores of binary nanoclusters of transition metals Fe, Co, or Ni on the geometric and energy characteristics of the adsorption of molecules. We also propose the mechanism of interaction of H2S and SO2 molecules with binary platinum nanoclusters based on the changes in the electronic properties of the surface platinum atoms or in the distribution of active adsorption centers on the surface of nanoclusters depending on the type of the core. The accumulated results confirm the prospects of the density functional method in the theoretical evaluation of the influence of chemical composition and the structure of binary nanoparticles on their properties in the reactions of low-temperature fuel cells.

Keywords

density functional method platinum binary nanoclusters geometric structure hydrogen sulfide sulfur dioxide adsorption energy energy activity 

References

  1. 1.
    Sh. Zhang, X.-Z. Yuan, J. N. Ch. Hin, K. H. Wang, A. Friedrich, and M. Schulze, “A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells,” J. Power Sources, 194, 588–600 (2009).CrossRefGoogle Scholar
  2. 2.
    T. Loucka, “Adsorption and oxidation of sulphur and of sulphur dioxide at the platinum electrode,” J. Electroanal. Chem., 31, No. 2, 319–332 (1971).CrossRefGoogle Scholar
  3. 3.
    W. Shi, B. Yi, M. Houa, F. Jing, and P. Ming, “Hydrogen sulfide poisoning and recovery of PEMFC Pt-anodes,” J. Power Sources, 165, No. 2, 814–818 (2007).CrossRefGoogle Scholar
  4. 4.
    Z. Shi, D. Song, J. Zhang, Z.-S. Liu, S. Knights, R. Vohra, N. Jia, and D. Harvey, “Transient analysis of hydrogen sulfide contamination on the performance of a PEM fuel cell,” J. Electrochem. Soc., 154, No. 7, B609–B615 (2007).CrossRefGoogle Scholar
  5. 5.
    E. Lamy-Pitara, Y. Tainon, B. Beden, and J. Barbier, “Nature and effects of sulphur adsorbed on platinum in acid medium: an investigation using UV-visible reflectance spectroscopy,” Electroanal. Chem., 279, 291–303 (1990).CrossRefGoogle Scholar
  6. 6.
    M. Kawase, Y. Mugikura, and T. Watanabe, “The effects of H2S on electrolyte distribution and cell performance in the molten carbonate fuel cell,” J. Electrochem. Soc., 147, No. 4, 1240–1244 (2000).CrossRefGoogle Scholar
  7. 7.
    W. Shi, B. Yi, M. Hou, and Z. Shao, “The effect of H2S and CO mixtures on PEMFC performance,” Int. J. Hydrogen Energy, 32, No. 17, 4412–4417 (2007).CrossRefGoogle Scholar
  8. 8.
    Y. Zhai, G. Bender, S. Dorn, M. Angelo, K. Bethune, and R. Rocheleau, “Sulfur dioxide contamination in PEMFCs: degradation and recovery of performance,” ECS Transact., 16, 873–880 (2008).CrossRefGoogle Scholar
  9. 9.
    H. Jiang, H. Yang, R. Hawkins, and Z. Ring, “Effect of palladium on sulfur resistance in Pt–Pd bimetallic catalysts,” Catalysis Today, 125, 282–290 (2007).CrossRefGoogle Scholar
  10. 10.
    D. Wales and J. Doye, “Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms,” J. Phys. Chem., Ser. A, 101, No. 28, 5111–5116 (1997).CrossRefGoogle Scholar
  11. 11.
    V. Pokhmurskii, S. Korniy, and V. Kopylets, “Computer simulation of binary platinum–cobalt nanoclusters interaction with oxygen,” J. Cluster Sci., 22, No. 3, 449–458 (2011).CrossRefGoogle Scholar
  12. 12.
    G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, and R. Ferrando, “Magic polyicosahedral core-shell nanoclusters,” Phys. Rev. Lett., 93, No. 10, 105503–105507 (2004).CrossRefGoogle Scholar
  13. 13.
    M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong, “NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations,” Comput. Phys. Comm., 181, 1477–1489 (2010).CrossRefGoogle Scholar
  14. 14.
    A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., 98, 5648–5652 (1993).CrossRefGoogle Scholar
  15. 15.
    E. Cartmell and G. W. A. Fowles, Valency and Molecular Structure, Butterworth-Heinemann, New York (1977).Google Scholar
  16. 16.
    V. A. Sethuraman and J. W. Weidner, “Analysis of sulfur poisoning on a PEM fuel cell electrode,” Electrochim. Acta, 55, No. 20, 5683–5694 (2010).CrossRefGoogle Scholar
  17. 17.
    D. C. Ford, Ye. Xu, and M. Mavrikakis, “Atomic and molecular adsorption on Pt(111),” Surf. Sci., 587, 159–174 (2005).CrossRefGoogle Scholar
  18. 18.
    S. Korniy, V. Pokhmurskii, and V. Kopylets, “A theoretical study of CO adsorption on Pt–Me (Me–Fe, Co, Ni) nanoclusters,” J. Thermodyn. & Catalysis, 7, No. 2, 1000169, 1–4 (2016).Google Scholar
  19. 19.
    N. M. Markovic and P. N. Ross Jr., “Surface science studies of model fuel cell electrocatalysis,” Surf. Sci. Rep., 45, 117–229 (2002).CrossRefGoogle Scholar
  20. 20.
    M. Happel, N. Luckas, F. Vines, M. Sobota, M. Laurin, A. Gorling, and J. Libuda, “SO2 adsorption on Pt(111) and oxygen precovered Pt(111): A combined infrared reflection absorption spectroscopy and density functional study,” J. Phys. Chem., Ser. C, 115, 479–491 (2011).CrossRefGoogle Scholar
  21. 21.
    S. A. Korniy, V. I. Kopylets’ and V. I. Pokhmurskiy, “Simulation of corrosive dissolution of Pt binary nanocluster in acid environment of polymer electrolyte membrane (PEM) fuel cells,” in: G. A. Zaikov, L. Bazylak, and A. Haghi (editors), Functional Polymer Blends and Nanocomposites, Apple Academic Press, New York (2014), pp. 197–216.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. А. Kornii
    • 1
  • V. I. Pokhmurs’kyi
    • 1
  • N. R. Chervins’ka
    • 1
  1. 1.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations