Advertisement

Modeling and characterisation of depletion of aluminium in bond coat and growth of mixed oxides in thermal barrier coatings

  • L. Y. Lim
  • S. A. MeguidEmail author
Article
  • 24 Downloads

Abstract

Most existing thermal barrier coating (TBC) studies do not account for the depletion of Al in the BC and growth of mixed oxides (MOs). In this complementary study, we modify and extend our earlier (Lim and Meguid in Mater Des, 2019.  https://doi.org/10.1016/j.matdes.2018.107543) coupled finite volume (FV)–finite element (FE) formulations to incorporate diffusion reactions of Al and Cr in the BC. The modified/expanded FV–FE formulations are supported by the introduction of appropriate diffusion–reaction equations and high temperature oxidation model. Three aspects of the work were accordingly examined. Firstly, the FV model is used to describe the diffusion and reaction of Al and O2 in the formation of α-Al2O3. The β-phase rate of depletion predicted by the model agrees well with experimental findings. Secondly, the diffusion of Cr through the TGO that leads to the formation of an external layer of MOs is simulated using the FV model. Our simulations reveal that MOs form in the early stage of thermal exposure, although there are sufficient Al in the BC to sustain the growth of α-Al2O3 phase. We reasoned this to the formation of internal oxides and diffusion cell in the BC. Lastly, we studied the effect of roughness on β-phase depletion and growth of TGO (α-Al2O3 + MOs). We show that β-phase in the peak of undulation depletes faster and the interface between the β + γ phase and γ phase in the BC straightens over time. Furthermore, our results reveal that MOs tend to form in the valley of undulation due to the shorter diffusion path.

Keywords

Thermal barrier coatings Finite volume Finite element Thermally grown oxide Mixed oxides Diffusion reaction 

List of symbols

\( C_{{O_{2} }} \), \( C_{\text{Al}} \) and \( C_{\text{Cr}} \)

Concentration of O2, Al and Cr, respectively

\( C_{{\upbeta,{\text{limit}}}} \)

Concentration of Al at which β + γ two phase structure of BC transforms into a single γ-phase

\( C_{{{\text{Al}},{\text{crit}}}} \)

Critical-healing concentration of Al

\( D_{{{\text{O}}_{2} ,{\text{TGO}}}} \)

Diffusivity of O2 in TGO

\( D_{{{\text{O}}_{2} ,{\text{BC}}}} \)

Diffusivity of O2 in BC

\( D_{{{\text{Al}},\upgamma}} \)

Diffusivity of Al in γ-phase of BC

\( D_{{{\text{Al}},\upbeta}} \)

Diffusivity of Al in β-phase of BC

\( D_{{{\text{Cr}},\upgamma}} \)

Diffusivity of Cr in γ-phase of BC

\( D_{{{\text{Cr}},{\text{TGO}}}} \)

Diffusivity of Cr in TGO

\( t_{\text{BC}} \)

Thickness of BC

\( N_{{{\text{M}}_{2} {\text{O}}_{3} }} \)

Maximum number of moles of M2O3 that can be formed in each control volume cell (M = Al or Cr)

\( \rho_{{{\text{M}}_{2} {\text{O}}_{3} }} \)

Density of oxide M2O3 (M = Al or Cr)

\( m_{{{\text{M}}_{2} {\text{O}}_{3} }} \)

Molar mass of oxide M2O3 (M = Al or Cr)

\( V_{CV} \)

Volume of control volume or cell

\( n \)

Volume fraction of oxide formed in control volume

tcell, and wcell

Thickness and width of diffusion cell

h and w

Height and width of mixed oxide formed

\( \bar{h}\,{\text{and}}\,\bar{w} \)

Normalised height and width of mixed oxides

T

Temperature

W and A

Wavelength and Amplitude of sinusoidal undulation

Ux and Uy

Displacement in the x-direction and y-direction

σyy

Out of plane stresses

Abbreviations

BC

Bond coat

FE

Finite element

FV

Finite volume

MOs

Mixed oxides

TBC

Thermal barrier coating

TC

Top coat

TGO

Thermally grown oxide

Notes

References

  1. Ali, M.S., Song, S., Xiao, P.: Degradation of thermal barrier coatings due to thermal cycling up to 1150 °C. J. Mater. Sci. (2002).  https://doi.org/10.1023/A:1015245920054 CrossRefGoogle Scholar
  2. Bai, Y., Han, Z.H., Li, H.Q., Xu, C., Xu, Y.L., Ding, C.H., Yang, J.F.: Structure–property differences between supersonic and conventional atmospheric plasma sprayed zirconia thermal barrier coatings. Surf. Coat. Technol. (2011).  https://doi.org/10.1016/j.surfcoat.2011.01.056 CrossRefGoogle Scholar
  3. Bai, Y., Ding, C., Li, H., Han, Z., Ding, B., Wang, T., Yu, L.: Isothermal oxidation behavior of supersonic atmospheric plasma-sprayed thermal barrier coating system. J. Therm. Spray Technol. (2013).  https://doi.org/10.1007/s11666-013-9979-7 CrossRefGoogle Scholar
  4. Bakan, E., Vaßen, R.: Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties. J. Therm. Spray Technol. (2017).  https://doi.org/10.1007/s11666-017-0597-7 CrossRefGoogle Scholar
  5. Birks, N., Meier, G.H., Pettit, F.S.: Introduction to the High Temperature Oxidation of Metals, 2nd edn (2006).  https://doi.org/10.1017/cbo9781139163903
  6. Borgenstam, A., Engström, A., Höglund, L., Ågren, J.: DICTRA, a tool for simulation of diffusional transformations in alloys. J. Phase Equilib. (2000).  https://doi.org/10.1361/105497100770340057 CrossRefGoogle Scholar
  7. Chen, H., Barman, T.: Thermo-Calc and DICTRA modelling of the β-phase depletion behaviour in CoNiCrAlY coating alloys at different Al contents. Comput. Mater. Sci. (2018).  https://doi.org/10.1016/j.commatsci.2018.02.013 CrossRefGoogle Scholar
  8. Chen, H., McCartney, D.G.: Some aspects on modelling of the β-phase depletion behaviour under different oxide growth kinetics in HVOF CoNiCrAlY coatings. Surf. Coat. Technol. (2017).  https://doi.org/10.1016/j.surfcoat.2017.01.075 CrossRefGoogle Scholar
  9. Chen, W.R., Wu, X., Dudzinski, D., Patnaik, P.C.: Modification of oxide layer in plasma-sprayed thermal barrier coatings. Surf. Coat. Technol. (2006).  https://doi.org/10.1016/j.surfcoat.2005.08.141 CrossRefGoogle Scholar
  10. Chen, W.R., Wu, X., Marple, B.R., Lima, R.S., Patnaik, P.C.: Pre-oxidation and TGO growth behaviour of an air-plasma-sprayed thermal barrier coating. Surf. Coat. Technol. (2008a).  https://doi.org/10.1016/j.surfcoat.2008.01.021 CrossRefGoogle Scholar
  11. Chen, W.R., Archer, R., Huang, X., Marple, B.R.: TGO growth and crack propagation in a thermal barrier coating. J. Therm. Spray Technol. (2008b).  https://doi.org/10.1007/s11666-008-9251-8 CrossRefGoogle Scholar
  12. Chen, H., Jackson, G.A., Voisey, K.T., McCartney, D.G.: Modelling and experimental study on β-phase depletion behaviour of HVOF sprayed free-standing CoNiCrAlY coatings during oxidation. Surf. Coat. Technol. (2016).  https://doi.org/10.1016/j.surfcoat.2016.02.008 CrossRefGoogle Scholar
  13. Chen, H., Rushworth, A., Hou, X., He, J., Guo, H.: Effects of temperature on the β-phase depletion in MCrAlYs: a modelling and experimental study towards designing new bond coat alloys. Surf. Coat. Technol. (2019).  https://doi.org/10.1016/j.surfcoat.2019.02.024 CrossRefGoogle Scholar
  14. Curry, N., Tang, Z., Markocsan, N., Nylén, P.: Influence of bond coat surface roughness on the structure of axial suspension plasma spray thermal barrier coatings—thermal and lifetime performance. Surf. Coat. Technol. 268, 15–23 (2015).  https://doi.org/10.1016/j.surfcoat.2014.08.067 CrossRefGoogle Scholar
  15. Daroonparvar, M., Hussain, M.S., Yajid, M.A.M.: The role of formation of continues thermally grown oxide layer on the nanostructured NiCrAlY bond coat during thermal exposure in air. Appl. Surf. Sci. 261, 287–297 (2012a).  https://doi.org/10.1016/j.apsusc.2012.08.002 CrossRefGoogle Scholar
  16. Daroonparvar, M., Hussain, M.S., Yajid, M.A.M.: The role of formation of continues thermally grown oxide layer on the nanostructured NiCrAlY bond coat during thermal exposure in air. Appl. Surf. Sci. (2012b).  https://doi.org/10.1016/j.apsusc.2012.08.002 CrossRefGoogle Scholar
  17. Daroonparvar, M., Yajid, M.A.M., Yusof, N.M., Hussain, M.S., Rad, H.R.B.: Formation of a dense and continuous Al2O3 layer in nano thermal barrier coating systems for the suppression of spinel growth on the Al2O3 oxide scale during oxidation. J. Alloys Compd. (2013).  https://doi.org/10.1016/j.jallcom.2013.03.168 CrossRefGoogle Scholar
  18. Deal, B.E., Grove, A.S.: General relationship for the thermal oxidation of silicon. J. Appl. Phys. (1965).  https://doi.org/10.1063/1.1713945 CrossRefGoogle Scholar
  19. Doleker, K.M., Karaoglanli, A.C.: Comparison of oxidation behavior of shot-peened plasma spray coatings with cold gas dynamic spray coatings. Oxid. Met. (2017).  https://doi.org/10.1007/s11085-016-9691-3 CrossRefGoogle Scholar
  20. Echsler, H., Renusch, D., Schütze, M.: Bond coat oxidation and its significance for life expectancy of thermal barrier coating systems. Mater. Sci. Technol. (2004).  https://doi.org/10.1179/026708304225012143 CrossRefGoogle Scholar
  21. Elsaß, M., Frommherz, M., Scholz, A., Oechsner, M.: Interdiffusion in MCrAlY coated nickel-base superalloys. Surf. Coat. Technol. 307, 565–573 (2016).  https://doi.org/10.1016/j.surfcoat.2016.09.049 CrossRefGoogle Scholar
  22. Eriksson, R., Sjöström, S., Brodin, H., Johansson, S., Östergren, L., Li, X.H.: TBC bond coat-top coat interface roughness: influence on fatigue life and modelling aspects. Surf. Coat. Technol. (2013).  https://doi.org/10.1016/j.surfcoat.2013.09.051 CrossRefGoogle Scholar
  23. Evans, H.E.: Oxidation failure of TBC systems: an assessment of mechanisms. Surf. Coat. Technol. 206, 1512–1521 (2011).  https://doi.org/10.1016/j.surfcoat.2011.05.053 CrossRefGoogle Scholar
  24. Evans, H.E., Taylor, M.P.: Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems. Oxid. Met. (2001).  https://doi.org/10.1023/A:1010369024142 CrossRefGoogle Scholar
  25. Gell, M., Eric, J., Krishnakumar, V., McCarron, K., Barber, B., Sohn, Y.H., Tolpygo, V.K.: Bond strength, bond stress and spallation mechanisms of thermal barrier coatings. Surf. Coat. Technol. (1999).  https://doi.org/10.1016/s0257-8972(99)00338-2 CrossRefGoogle Scholar
  26. Gell, M., Xie, L., Ma, X., Jordan, E.H., Padture, N.P.: Highly durable thermal barrier coatings made by the solution precursor plasma spray process. Surf. Coat. Technol. (2004).  https://doi.org/10.1016/j.surfcoat.2003.06.023 CrossRefGoogle Scholar
  27. Giggins, C.S., Pettit, F.S.: Oxidation of Ni–Cr–Al alloys between 1000 °C and 1200 °C. J. Electrochem. Soc. (2007).  https://doi.org/10.1149/1.2407837 CrossRefGoogle Scholar
  28. Gil, A., Shemet, V., Vassen, R., Subanovic, M., Toscano, J., Naumenko, D., Singheiser, L., Quadakkers, W.J.: Effect of surface condition on the oxidation behaviour of MCrAlY coatings. Surf. Coat. Technol. (2006).  https://doi.org/10.1016/j.surfcoat.2006.07.252 CrossRefGoogle Scholar
  29. Gupta, M., Eriksson, R., Sand, U., Nylén, P.: A diffusion-based oxide layer growth model using real interface roughness in thermal barrier coatings for lifetime assessment. Surf. Coat. Technol. 271, 181–191 (2015a).  https://doi.org/10.1016/j.surfcoat.2014.12.043 CrossRefGoogle Scholar
  30. Gupta, M., Eriksson, R., Sand, U., Nylén, P.: A diffusion-based oxide layer growth model using real interface roughness in thermal barrier coatings for lifetime assessment. Surf. Coat. Technol. (2015b).  https://doi.org/10.1016/j.surfcoat.2014.12.043 CrossRefGoogle Scholar
  31. Hagel, W.C., Seybolt, A.U.: Cation diffusion in Cr2O3. J. Electrochem. Soc. (1961).  https://doi.org/10.1149/1.2427973 CrossRefGoogle Scholar
  32. Hasegawa, M., Kagawa, Y.: Microstructural and mechanical properties changes of a NiCoCrAlY bond coat with heat exposure time in air plasma-sprayed Y2O3–ZrO2 TBC systems. Int. J. Appl. Ceram. Technol. (2006).  https://doi.org/10.1111/j.1744-7402.2006.02085.x CrossRefGoogle Scholar
  33. Hille, T.S., Turteltaub, S., Suiker, A.S.J.: Oxide growth and damage evolution in thermal barrier coatings. Eng. Fract. Mech. 78, 2139–2152 (2011).  https://doi.org/10.1016/j.engfracmech.2011.04.003 CrossRefGoogle Scholar
  34. Hindam, H., Whittle, D.P.: Microstructure, adhesion and growth kinetics of protective scales on metals and alloys. Oxid. Met. 18, 245–284 (1982).  https://doi.org/10.1007/BF00656571 CrossRefGoogle Scholar
  35. Karunaratne, M.S.A., Ogden, S.L., Kenny, S.D., Thomson, R.C.: A multicomponent diffusion model for prediction of microstructural evolution in coated Ni based superalloy systems. Mater. Sci. Technol. (2009).  https://doi.org/10.1179/174328408x355415 CrossRefGoogle Scholar
  36. Kumar, V., Balasubramanian, K.: Progress update on failure mechanisms of advanced thermal barrier coatings: a review. Prog. Org. Coat. (2016).  https://doi.org/10.1016/j.porgcoat.2015.09.019 CrossRefGoogle Scholar
  37. Li, Y., Li, C.J., Zhang, Q., Yang, G.J., Li, C.X.: Influence of composition of TGO on the thermal shock lifetime of thermal barrier coatings with cold-sprayed MCrAlTaY bond coat. In: Proceedings of International Thermal Spray Conference (2009).  https://doi.org/10.1361/cp2009itsc0071
  38. Li, Y., Li, C.J., Yang, G.J., Xing, L.K.: Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying. Surf. Coat. Technol. (2010).  https://doi.org/10.1016/j.surfcoat.2010.08.144 CrossRefGoogle Scholar
  39. Lim, L.Y., Meguid, S.A.: Temperature dependent dynamic growth of thermally grown oxide in thermal barrier coatings. Mater. Des. (2019).  https://doi.org/10.1016/j.matdes.2018.107543 CrossRefGoogle Scholar
  40. Lima, C.R.C., Guilemany, J.M.: Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats. Surf. Coat. Technol. (2007).  https://doi.org/10.1016/j.surfcoat.2006.10.005 CrossRefGoogle Scholar
  41. Lu, Z., Myoung, S.W., Kim, E.H., Lee, J.H., Jung, Y.G.: Microstructure evolution and thermal durability with coating thickness in APS thermal barrier coatings. Mater. Today Proc. (2014).  https://doi.org/10.1016/j.matpr.2014.09.009 CrossRefGoogle Scholar
  42. Lu, X.-L., Liu, X.-B., Yu, P.-C., Qiao, S.-J., Zhai, Y.-J., Wang, M.-D., Chen, Y., Xu, D.: Synthesis and characterization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding. Opt. Laser Technol. 78, 87–94 (2016).  https://doi.org/10.1016/j.optlastec.2015.10.005 CrossRefGoogle Scholar
  43. Ma, K., Schoenung, J.M.: Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: homogeneity and growth rate of TGO. Surf. Coat. Technol. (2011).  https://doi.org/10.1016/j.surfcoat.2011.05.025 CrossRefGoogle Scholar
  44. Manap, A., Nakano, A., Ogawa, K.: The protectiveness of thermally grown oxides on cold sprayed CoNiCrAlY bond coat in thermal barrier coating. J. Therm. Spray Technol. (2012).  https://doi.org/10.1007/s11666-012-9749-y CrossRefGoogle Scholar
  45. Mori, T., Kuroda, S., Murakami, H., Katanoda, H., Sakamoto, Y., Newman, S.: Effects of initial oxidation on β phase depletion and oxidation of CoNiCrAlY bond coatings fabricated by warm spray and HVOF processes. Surf. Coat. Technol. (2013).  https://doi.org/10.1016/j.surfcoat.2013.01.028 CrossRefGoogle Scholar
  46. Moridi, A., Azadi, M., Farrahi, G.H.: Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects. Surf. Coat. Technol. 243, 91–99 (2014).  https://doi.org/10.1016/j.surfcoat.2012.02.019 CrossRefGoogle Scholar
  47. Müller, J., Neuschütz, D.: Efficiency of α-alumina as diffusion barrier between bond coat and bulk material of gas turbine blades. User Model. User-Adapt. Interact. (2003).  https://doi.org/10.1016/s0042-207x(02)00746-7 CrossRefGoogle Scholar
  48. Nakamura, R., Takasawa, K., Yamazaki, Y., Iijima, Y.: Single-phase interdiffusion in the B2 type intermetallic compounds NiAl, CoAl and FeAl. Intermetallics (2002).  https://doi.org/10.1016/S0966-9795(01)00125-X CrossRefGoogle Scholar
  49. Ni, L.Y., Liu, C., Huang, H., Zhou, C.G.: Thermal cycling behavior of thermal barrier coatings with HVOF NiCrAlY bond coat. J. Therm. Spray Technol. 20, 1133 (2011).  https://doi.org/10.1007/s11666-011-9647-8 CrossRefGoogle Scholar
  50. Nijdam, T.J., Jeurgens, L.P.H., Sloof, W.G.: Promoting exclusive α-Al2O3 growth upon high-temperature oxidation of NiCrAl alloys: experiment versus model predictions. Acta Mater. (2005).  https://doi.org/10.1016/j.actamat.2004.12.014 CrossRefGoogle Scholar
  51. Nijdam, T.J., Marijnissen, G.H., Vergeldt, E., Kloosterman, A.B., Sloof, W.G.: Development of a pre-oxidation treatment to improve the adhesion between thermal barrier coatings and NiCoCrAlY bond coatings. Oxid. Met. (2006).  https://doi.org/10.1007/s11085-006-9036-8 CrossRefGoogle Scholar
  52. Pint, B.A., Garrattreed, A., Hobbs, L.W.: Analytical electron-microscopy study of the breakdown of α-Al2O3 scales formed on oxide dispersion-strengthened alloys. Oxid. Met. 56(1–2), 119–145 (2001)CrossRefGoogle Scholar
  53. Rabiei, A.: Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. Acta Mater. 48, 3963–3976 (2000).  https://doi.org/10.1016/S1359-6454(00)00171-3 CrossRefGoogle Scholar
  54. Ranjbar-Far, M., Absi, J., Mariaux, G., Dubois, F.: Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method. Mater. Des. 31, 772–781 (2010).  https://doi.org/10.1016/j.matdes.2009.08.005 CrossRefGoogle Scholar
  55. Renusch, D., Schorr, M., Schütze, M.: The role that bond coat depletion of aluminum has on the lifetime of APS–TBC under oxidizing conditions. Mater. Corros. 59, 547–555 (2008).  https://doi.org/10.1002/maco.200804137 CrossRefGoogle Scholar
  56. Richer, P., Yandouzi, M., Beauvais, L., Jodoin, B.: Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying. Surf. Coat. Technol. (2010).  https://doi.org/10.1016/j.surfcoat.2010.03.043 CrossRefGoogle Scholar
  57. Saremi, M., Afrasiabi, A., Kobayashi, A.: Microstructural analysis of YSZ and YSZ/Al2O3 plasma sprayed thermal barrier coatings after high temperature oxidation. Surf. Coat. Technol. (2008).  https://doi.org/10.1016/j.surfcoat.2007.11.029 CrossRefGoogle Scholar
  58. Sarioglu, C., Schumann, E., Blachere, J.R., Pettit, F.S., Meier, G.H.: X-ray determination of stresses in alumina scales on high temperature alloys. Mater. High Temp. 17, 109–115 (2000).  https://doi.org/10.1179/mht.2000.017 CrossRefGoogle Scholar
  59. Schlichting, K.W., Vaidyanathan, K., Sohn, Y.H., Jordan, E.H., Gell, M., Padture, N.P.: Application of Cr3+ photoluminescence piezo-spectroscopy to plasma-sprayed thermal barrier coatings for residual stress measurement. Mater. Sci. Eng. A 291, 68–77 (2000).  https://doi.org/10.1016/S0921-5093(00)00973-4 CrossRefGoogle Scholar
  60. Stiger, M.J., Yanar, N.M., Topping, M.G., Pettit, F.S., Meier, G.H.: Thermal barrier coatings for the 21st century. Zeitschrift Fur Met. 90, 1069–1078 (1999)Google Scholar
  61. Strauss, D., Müller, G., Schumacher, G., Engelko, V., Stamm, W., Clemens, D., Quaddakers, W.J.: Oxide scale growth on MCrAlY bond coatings after pulsed electron beam treatment and deposition of EBPVD-TBC. Surf. Coat. Technol. (2001).  https://doi.org/10.1016/S0257-8972(00)00916-6 CrossRefGoogle Scholar
  62. Tang, F., Ajdelsztajn, L., Schoenung, J.M.: Influence of cryomilling on the morphology and composition of the oxide scales formed on HVOF CoNiCrAlY coatings. Oxid. Met. (2004).  https://doi.org/10.1023/B:OXID.0000025332.26757.41 CrossRefGoogle Scholar
  63. Tang, J.J., Bai, Y., Zhang, J.C., Liu, K., Liu, X.Y., Zhang, P., Wang, Y., Zhang, L., Liang, G.Y., Gao, Y., Yang, J.F.: Microstructural design and oxidation resistance of CoNiCrAlY alloy coatings in thermal barrier coating system. J. Alloys Compd. 688, 729–741 (2016).  https://doi.org/10.1016/j.jallcom.2016.07.018 CrossRefGoogle Scholar
  64. Taylor, M.P., Pragnell, W.M., Evans, H.E.: The influence of bond coat surface roughness on chemical failure and delamination in TBC systems. Mater. Corros. (2008).  https://doi.org/10.1002/maco.200804135 CrossRefGoogle Scholar
  65. Tsai, K.Y., Tsai, M.H., Yeh, J.W.: Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. (2013).  https://doi.org/10.1016/j.actamat.2013.04.058 CrossRefGoogle Scholar
  66. Vaidyanathan, K., Gell, M., Jordan, E.: Mechanisms of spallation of electron beam physical vapor deposited thermal barrier coatings with and without platinum aluminide bond coat ridges. Surf. Coat. Technol. (2000).  https://doi.org/10.1016/S0257-8972(00)00891-4 CrossRefGoogle Scholar
  67. Wang, L., Li, D.C., Yang, J.S., Shao, F., Zhong, X.H., Zhao, H.Y., Yang, K., Tao, S.Y., Wang, Y.: Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods: a review. J. Eur. Ceram. Soc. (2016).  https://doi.org/10.1016/j.jeurceramsoc.2015.12.038 CrossRefGoogle Scholar
  68. Xie, F., Sun, Y., Li, D., Bai, Y., Zhang, W.: Modelling of catastrophic stress development due to mixed oxide growth in thermal barrier coatings. Ceram. Int. (2019).  https://doi.org/10.1016/J.CERAMINT.2019.02.214 CrossRefGoogle Scholar
  69. Zhang, W.-W., Li, G.-R., Zhang, Q., Yang, G.-J., Zhang, G.-W., Mu, H.-M.: Self-enhancing thermal insulation performance of bimodal-structured thermal barrier coating. J. Therm. Spray Technol. 27, 1064–1075 (2018).  https://doi.org/10.1007/s11666-018-0754-7 CrossRefGoogle Scholar
  70. Zhu, H.X., Fleck, N.A., Cocks, A.C.F., Evans, A.G.: Numerical simulations of crack formation from pegs in thermal barrier systems with NiCoCrAlY bond coats. Mater. Sci. Eng. A 404, 26–32 (2005).  https://doi.org/10.1016/j.msea.2005.05.033 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Mechanics and Aerospace Design LabUniversity of TorontoTorontoCanada

Personalised recommendations