Advertisement

Analysis and design of compacted IWRC meshed model under axial strain

  • C. ErdönmezEmail author
Article
  • 20 Downloads

Abstract

Wire ropes are one of the most complex shapes due to the helical coiling of wires. It is difficult to generate a meshed model of even the classical circular wire rope. In this paper a more complex form which is known as compacted wire rope is modeled in 3D. The originality of this work is that, it is the first time a multi-layered compacted wire rope is generated and brought to the literature. The written code permits to create any length of compacted independent wire rope core geometry and to change wire radiuses and pitch lengths easily. Meanwhile flexibility of the code makes it easier to generate different kind of compacted independent wire rope core which is ready for numerical analysis. Compacted wire ropes have increased wear resistance and tensile strength. Due to its flattened surface their usage on a sheave or a pulley provides less wearing and breaking of wires while more tensile strength and increased lifetime. With the compaction process diameter of the wire rope decreases which results a decrease on the reaction moment also. This modeling issue can be used to create new type of complex wire rope models in the future.

Keywords

Compacted wire rope modeling Strand compaction Increased wear resistance Wire rope strength Flattened wire Compacted IWRC 

Notes

Compliance with ethical standards

Conflict of interest

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. Bridon-Bekaert: The ropes group, https://www.bridon-bekaert.com/en-gb (2018). Accessed 23 Sept 2018
  2. Costello, G.A.: Theory of wire rope. Springer, Berlin (1990)CrossRefGoogle Scholar
  3. Erdönmez, C., İmrak, C.E.: Modeling techniques of nested helical structure based geometry for numerical analysis. Strojniški vestnik J. Mech. Eng. (2011a).  https://doi.org/10.5545/sv-jme.2009.006 CrossRefGoogle Scholar
  4. Erdönmez, C., İmrak, C.E.: A finite element model for independent wire rope core with double helical geometry subjected to axial loads. Sadhana (2011b).  https://doi.org/10.1007/s12046-011-0053-1 CrossRefGoogle Scholar
  5. Erdönmez, C.: n-tuple complex helical geometry modeling using parametric equations. Eng. Comput. (2014).  https://doi.org/10.1007/s00366-013-0319-9 CrossRefGoogle Scholar
  6. Fedorko, G., Stanova, E., Molnar, V., Husakova, N., Kmet, S.: Computer modelling and finite element analysis of spiral triangular strands. Adv. Eng. Softw. (2014).  https://doi.org/10.1016/j.advengsoft.2014.02.004 CrossRefGoogle Scholar
  7. Frikha, A., Cartraud, P., Treyssède, F.: Mechanical modeling of helical structures accounting for translational invariance. Part 1: static behavior. Int. J. Solids Struct. (2013).  https://doi.org/10.1016/j.ijsolstr.2013.01.010 CrossRefGoogle Scholar
  8. Ivanco, V., Kmet, S., Fedorko, G.: Finite element simulation of creep of spiral strands. Eng. Struct. (2016).  https://doi.org/10.1016/j.engstruct.2016.02.053 CrossRefGoogle Scholar
  9. Jiang, W.G., Yao, M.S., Walton, J.M.: A concise finite element model for simple straight wire rope strand. Int. J. Mech. Sci. (1999).  https://doi.org/10.1016/S0020-7403(98)00039-3 CrossRefzbMATHGoogle Scholar
  10. Jiang, W.G., Henshall, J.L., Walton, J.M.: A concise finite element model for three-layered straight wire rope strand. Int. J. Mech. Sci. (2000).  https://doi.org/10.1016/S0020-7403(98)00111-8 CrossRefzbMATHGoogle Scholar
  11. Jiang, W.G., Henshall, J.L.: A novel finite element model for helical springs. Finite Elem. Anal. Des. (2000).  https://doi.org/10.1016/S0168-874X(99)00076-1 CrossRefzbMATHGoogle Scholar
  12. Love, A.E.H.: A treatise on the mathematical theory of elasticity, 4th edn. Dover, New York (1944)zbMATHGoogle Scholar
  13. Ma, W., Zhu, Z.C., Peng, Y.X., Chen, G.A.: Computer-aided modeling of wire ropes bent over a sheave. Adv. Eng. Softw. (2015).  https://doi.org/10.1016/j.advengsoft.2015.06.006 CrossRefGoogle Scholar
  14. Nawrocki, A., Labrosse, M.: A finite element model for simple straight wire rope strands. Comput. Struct. (2000).  https://doi.org/10.1016/S0045-7949(00)00026-2 CrossRefGoogle Scholar
  15. Ramsey, H.: A Theory of thin rods with application to helical constituent wires in cables. Int. J. Mech. Sci. (1988).  https://doi.org/10.1016/0020-7403(88)90099-9 CrossRefzbMATHGoogle Scholar
  16. Ridge, I.M.L., O’Hear, N., Verreet, R., et al.: High strength fibre cored steel wire rope for deep hoisting applications. In: OIPEEC Conference Proceedings. Johannesburg, pp. 225–240 (2007)Google Scholar
  17. Stanova, E., Fedorko, G., Fabian, M., Kmet, S.: Computer modelling of wire strands and ropes Part I: theory and computer implementation. Adv. Eng. Softw. (2011a).  https://doi.org/10.1016/j.advengsoft.2011.02.008 CrossRefzbMATHGoogle Scholar
  18. Stanova, E., Fedorko, G., Fabian, M., Kmet, S.: Computer modelling of wire strands and ropes part II: finite element-based applications. Adv. Eng. Softw. (2011b).  https://doi.org/10.1016/j.advengsoft.2011.02.010 CrossRefzbMATHGoogle Scholar
  19. Stanova, E., Fedorko, G., Kmet, S., Molnar, V., Fabian, M.: Finite element analysis of spiral strands with different shapes subjected to axial loads. Adv. Eng. Softw. (2015).  https://doi.org/10.1016/j.advengsoft.2015.01.004 CrossRefGoogle Scholar
  20. Sun, J.-F., Wang, G.-L., Zhang, H.-O.: Elasto-plastic contact problem of laying wire rope using FE analysis. Int. J. Adv. Manuf. Technol. (2005).  https://doi.org/10.1007/s00170-004-2120-9 CrossRefGoogle Scholar
  21. Usabiaga, H., Pagalday, J.M.: Analytical procedure for modelling recursively and wire by wire stranded ropes subjected to traction and torsion loads. Int. J. Solids Struct. (2008).  https://doi.org/10.1016/j.ijsolstr.2008.04.009 CrossRefzbMATHGoogle Scholar
  22. Velinsky, S.A., Anderson, G.L., Costello, G.A.: Wire rope with complex cross sections. J. Eng. Mech. (1984).  https://doi.org/10.1061/(ASCE)0733-9399(1984)110:3(380) CrossRefGoogle Scholar
  23. Velinsky, S.A.: Design and mechanics of multi-lay wire strands. Trans. ASME J. Mech. Trans. Autom. Des. 110, 152–160 (1988)CrossRefGoogle Scholar
  24. Velinsky, S.A.: On the design of wire rope. Trans. ASME J. Mech. Trans. Autom. Des. 111, 382–388 (1989)CrossRefGoogle Scholar
  25. Wang, D., Zhang, D., Wang, S., Ge, S.: Finite element analysis of hoisting rope and fretting wear evolution and fatigue life estimation of steel wires. Eng. Fail. Anal. (2013).  https://doi.org/10.1016/j.engfailanal.2012.08.014 CrossRefGoogle Scholar
  26. Wang, R.C., Miscoe, A.J., McKewan, W.M.: Model for the structure of round-strand wire ropes, U.S. Department of Health and Human Services. Publication No. 98-148, Report of Investigations 9644:1–19 (1998)Google Scholar
  27. Wang, X.-Y., Meng, X.-B., Wang, J.-X., Sun, Y.-H., Gao, K.: Mathematical modeling and geometric analysis for wire rope strands. Appl. Math. Model. (2015).  https://doi.org/10.1016/j.apm.2014.07.015 MathSciNetCrossRefGoogle Scholar
  28. William, J.G.: Compacted stranded cable, United States Patent Office. 3,234,722, Filed Apr. 12, 1963, Ser. No. 272,686 (1966)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Basic SciencesNational Defense UniversityTuzla, IstanbulTurkey

Personalised recommendations