Advertisement

Nonlinear vibration analysis of a rotor system with parallel and angular misalignments under uncertainty via a Legendre collocation approach

  • Chao FuEmail author
  • Yongfeng Yang
  • Kuan Lu
  • Fengshou Gu
Article
  • 180 Downloads

Abstract

In this paper, the propagation of bounded uncertainties in the dynamic response of a misaligned rotor is investigated using a Legendre collocation based non-intrusive analysis method. A finite element rotor model is used and the parallel and angular misalignments are modelled by additions of stiffness and force terms to the system. A simplex meta-model for the harmonic solutions of the vibration problem is constructed to take into account the uncertainties. The influences of uncertainties in the fault parameters are analysed and the calculation performance of the interval method is validated. Different propagation mechanisms of the uncertainties are observed in the interval responses and discussed in case studies. The results of this study will promote the understandings of the nonlinear vibrations in misaligned rotor systems with interval variables.

Keywords

Rotor Misalignment Bounded uncertainty Harmonic response Legendre collocation 

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 11272257) and the Fundamental Research Funds for the Central Universities (No. 3102018ZY016).

References

  1. Al-Hussain, K.M.: Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment. J. Sound Vib. 266(2), 217–234 (2003)CrossRefGoogle Scholar
  2. Biswas, D., Ray, M.C.: Active constrained layer damping of geometrically nonlinear vibration of rotating composite beams using 1-3 piezoelectric composite. Int. J. Mech. Mater. Des. 9(1), 83–104 (2013)CrossRefGoogle Scholar
  3. Bhattacharya, A., Dutt, J.K., Pandey, R.K.: Influence of hydrodynamic journal bearings with multiple slip zones on rotordynamic behavior. J. Tribol. 139(6), 061701 (2017)CrossRefGoogle Scholar
  4. Didier, J., Sinou, J.-J., Faverjon, B.: Study of the non-linear dynamic response of a rotor system with faults and uncertainties. J. Sound Vib. 331(3), 671–703 (2012a)zbMATHCrossRefGoogle Scholar
  5. Didier, J., Faverjon, B., Sinou, J.-J.: Analysing the dynamic response of a rotor system under uncertain parameters by polynomial chaos expansion. J. Vib. Control 18(5), 712–732 (2012b)MathSciNetzbMATHCrossRefGoogle Scholar
  6. El-Mongy, H.H., Younes, Y.K.: Vibration analysis of a multi-fault transient rotor passing through sub-critical resonances. J. Vib. Control 24(14), 2986–3009 (2018)CrossRefGoogle Scholar
  7. Elishakoff, I., Sarlin, N.: Uncertainty quantification based on pillars of experiment, theory, and computation. Part II: theory and computation. Mech. Syst. Signal Process. 74, 54–72 (2016)CrossRefGoogle Scholar
  8. Friswell, M.I., Penny, J.E., Lees, A.W., Garvey, S.D.: Dynamics of Rotating Machines. Cambridge University Press, Cambridge (2010)zbMATHCrossRefGoogle Scholar
  9. Fu, C., Ren, X., Yang, Y., Xia, Y., Deng, W.: An interval precise integration method for transient unbalance response analysis of rotor system with uncertainty. Mech. Syst. Signal Process. 107, 137–148 (2018a)CrossRefGoogle Scholar
  10. Fu, C., Ren, X., Yang, Y., Lu, K., Wang, Y.: Nonlinear response analysis of a rotor system with a transverse breathing crack under interval uncertainties. Int. J. Nonlin. Mech. 105, 77–87 (2018b)CrossRefGoogle Scholar
  11. Fu, C., Ren, X., Yang, Y., Qin, W.: Dynamic response analysis of an overhung rotor with interval uncertainties. Nonlinear Dyn. 89(3), 2115–2124 (2017)CrossRefGoogle Scholar
  12. Isukapalli, S.S.: Uncertainty Analysis of Transport-Transformation Models. The State University of New Jersey, New Brunswick (1999)Google Scholar
  13. Jiang, C., Lu, G., Han, X., Liu, L.: A new reliability analysis method for uncertain structures with random and interval variables. Int. J. Mech. Mater. Des. 8(2), 169–182 (2012)CrossRefGoogle Scholar
  14. Koroishi, E.H., Cavalini Jr., A.A., Lima, A.M., Steffen Jr., V.: Stochastic modeling of flexible rotors. J. Braz. Soc. Mech. Sci. 34, 574–583 (2012)Google Scholar
  15. Kang, C.H., Hsu, W.C., Lee, E.K., Shiau, T.N.: Dynamic analysis of gear-rotor system with viscoelastic supports under residual shaft bow effect. Mech. Mach. Theory 46(3), 264–275 (2011)zbMATHCrossRefGoogle Scholar
  16. Lu, K., Jin, Y., Chen, Y., Yang, Y., Hou, L., Zhang, Z., Li, Z., Fu, C.: Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems. Mech. Syst. Signal Process. 123, 264–297 (2019)CrossRefGoogle Scholar
  17. Lu, K., Lian, Z., Gu, F., Liu, H.: Model-based chatter stability prediction and detection for the turning of a flexible workpiece. Mech. Syst. Signal Process. 100, 814–826 (2018)CrossRefGoogle Scholar
  18. Li, B., Ma, H., Yu, X., Zeng, J., Guo, X., Wen, B.: Nonlinear vibration and dynamic stability analysis of rotor-blade system with nonlinear supports. Arch. Appl. Mech. 89(7), 1375–1402 (2019)CrossRefGoogle Scholar
  19. Li, Z., Jiang, J., Tian, Z.: Stochastic dynamics of a nonlinear misaligned rotor system subject to random fluid-induced forces. J. Comput. Nonlin. Dyn. 12(1), 011004 (2017)CrossRefGoogle Scholar
  20. Li, Z., Jiang, J., Tian, Z.: Non-linear vibration of an angular-misaligned rotor system with uncertain parameters. J. Vib. Control 22(1), 129–144 (2016)CrossRefGoogle Scholar
  21. Li, J., Hong, J., Ma, Y., Zhang, D.: Modelling of misaligned rotor systems in aero-engines. In: ASME Turbo Expo 2012: International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, pp. 535–543 (2012)Google Scholar
  22. Liu, J., Sun, X., Meng, X., Li, K., Zeng, G., Wang, X.: A novel shape function approach of dynamic load identification for the structures with interval uncertainty. Int. J. Mech. Mater. Des. 12(3), 375–386 (2016)CrossRefGoogle Scholar
  23. Lees, A.: Misalignment in rigidly coupled rotors. J. Sound Vib. 305(1), 261–271 (2007)MathSciNetCrossRefGoogle Scholar
  24. Ma, H., Zeng, J., Feng, R., Pang, X., Wang, Q., Wen, B.: Review on dynamics of cracked gear systems. Eng. Fail. Anal. 55, 224–245 (2015a)CrossRefGoogle Scholar
  25. Ma, H., Wang, X., Niu, H., Wen, B.: Oil-film instability simulation in an overhung rotor system with flexible coupling misalignment. Arch. Appl. Mech. 85(7), 893–907 (2015b)CrossRefGoogle Scholar
  26. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)zbMATHGoogle Scholar
  27. Patel, T.H., Darpe, A.K.: Vibration response of misaligned rotors. J. Sound Vib. 325(3), 609–628 (2009)CrossRefGoogle Scholar
  28. Qi, W., Qiu, Z.: A collocation interval analysis method for interval structural parameters and stochastic excitation. Sci. China Phys. Mech. 55(1), 66–77 (2012)CrossRefGoogle Scholar
  29. Qiu, Z., Wang, X.: Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. Int. J. Solids Struct. 40(20), 5423–5439 (2003)zbMATHCrossRefGoogle Scholar
  30. Redmond, I.: Study of a misaligned flexibly coupled shaft system having nonlinear bearings and cyclic coupling stiffness-theoretical model and analysis. J. Sound Vib. 329(6), 700–720 (2010)CrossRefGoogle Scholar
  31. Roy, P.A., Meguid, S.A.: Nonlinear transient dynamic response of a blade subject to a pulsating load in a decaying centrifugal force field. Int. J. Mech. Mater. Des. 14(4), 709–728 (2018)CrossRefGoogle Scholar
  32. Ritto, T.G., Lopez, R.H., Sampaio, R., Cursi, J.E.S.D.: Robust optimization of a flexible rotor-bearing system using the Campbell diagram. Eng. Optimiz. 43(1), 77–96 (2011)MathSciNetCrossRefGoogle Scholar
  33. Soize, C.: Maximum entropy approach for modeling random uncertainties in transient elastodynamics. J. Acoust. Soc. Am. 109(5), 1979–1996 (2001)CrossRefGoogle Scholar
  34. Sinou, J.-J., Nechak, L., Besset, S.: Kriging metamodeling in rotordynamics: application for predicting critical speeds and vibrations of a flexible rotor. Complexity. Article ID 1264619 (2018)Google Scholar
  35. Sinou, J.-J., Faverjon, B.: The vibration signature of chordal cracks in a rotor system including uncertainties. J. Sound Vib. 331(1), 138–154 (2012)CrossRefGoogle Scholar
  36. Sinha, J.K., Lees, A., Friswell, M.I.: Estimating unbalance and misalignment of a flexible rotating machine from a single run-down. J. Sound Vib. 272(3–5), 967–989 (2004)CrossRefGoogle Scholar
  37. Srinivas, R.S., Tiwari, R., Kannababu, C.: Model based analysis and identification of multiple fault parameters in coupled rotor systems with offset discs in the presence of angular misalignment and integrated with an active magnetic bearing. J. Sound Vib. 450, 109–140 (2019)CrossRefGoogle Scholar
  38. Tai, X., Ma, H., Liu, F., Liu, Y., Wen, B.: Stability and steady-state response analysis of a single rub-impact rotor system. Arch. Appl. Mech. 85(1), 133–148 (2015)CrossRefGoogle Scholar
  39. Tuckmantel, F.W., Cavalca, K.L.: Vibration signatures of a rotor-coupling-bearing system under angular misalignment. Mech. Mach. Theory 133, 559–583 (2019)CrossRefGoogle Scholar
  40. Wang, N., Jiang, D.: Vibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: theoretical analysis and experimental study. Mech. Mach. Theory 125, 207–219 (2018)CrossRefGoogle Scholar
  41. Wang, C., Ma, Y., Zhang, D., Hong, J.: Interval analysis on aero-engine rotor system with misalignment. In: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, V07AT30A002 (2015)Google Scholar
  42. Wu, J., Luo, Z., Zheng, J., Jiang, C.: Incremental modeling of a new high-order polynomial surrogate model. Appl. Math. Model. 40(7–8), 4681–4699 (2016)MathSciNetCrossRefGoogle Scholar
  43. Wu, J., Luo, Z., Zhang, N., Zhang, Y.: A new interval uncertain optimization method for structures using Chebyshev surrogate models. Comput. Struct. 146, 185–196 (2015)CrossRefGoogle Scholar
  44. Wu, J., Zhang, Y., Chen, L., Luo, Z.: A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl. Math. Model. 37(6), 4578–4591 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  45. Xu, M., Marangoni, R.: Vibration analysis of a motor-flexible coupling-rotor system subject to misalignment and unbalance, Part II: experimental validation. J. Sound Vib. 176(5), 681–691 (1994)zbMATHCrossRefGoogle Scholar
  46. Yang, Y., Wu, Q., Wang, Y., Qin, W., Lu, K.: Dynamic characteristics of cracked uncertain hollow-shaft. Mech. Syst. Signal Process. 124, 36–48 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Vibration Engineering, Northwestern Polytechnical UniversityXi’anChina
  2. 2.Centre for Efficiency and Performance EngineeringUniversity of HuddersfieldHuddersfieldUK

Personalised recommendations