Advertisement

Dispersion of Love waves in size-dependent substrate containing finite piezoelectric and viscoelastic layers

  • Richa Goyal
  • Satish KumarEmail author
Article
  • 105 Downloads

Abstract

The dispersion properties of Love waves are utilized for the fabrication of sensor devices in the different material environments. This study involves the propagation of Love wave in a double-layered structure consisting of two finite layers of viscoelastic and piezoelectric material lying over the semi-infinite size-dependent micropolar substrate. The bottom substrate of the structure is modeled as, the material with microstructural properties. The real and damping dispersion relations are obtained analytically in closed form expression under both the cases of electrically open and short conditions. The coupling constant and characteristic length that describe the effect of the microstructure of the micropolar substrate, are studied graphically on Love wave propagation. The effects of piezoelectric layer are shown by considering two different materials of a piezoelectric layer, i.e., \(PZT-5H\) or \(BaTiO_3\), along with the internal friction and heterogeneity parameter associated with a viscoelastic layer. The numerical computation and the graphs are given for aluminium-epoxy (substrate), viscoelastic material and \(PZT-5H\) or \(BaTiO_3\) (piezoelectric layer). Some of the particular cases are derived from the study by using different relevant conditions.

Keywords

Love wave Piezoelectricity Viscoelastic Micropolar Heterogeneity Characteristic length Dispersion relations 

Notes

Acknowledgements

The authors gratefully acknowledge the support of following Indian government research agency: DST (Department of science and technology) via Grant no:- EMR/ 2016/002601.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Arani, A.G., Kolahchi, R., Mortazavi, S.A.: Nonlocal piezoelasticity based wave propagation of bonded double-piezoelectric nanobeam-systems. Int. J. Mech. Mater. Des. 10(2), 179–191 (2014)Google Scholar
  2. Chatterjee, M., Chattopadhyay, A., Dhua, S.: Shear wave propagation in viscoelastic heterogeneous layers lying over an initially stressed half-space. Mech. Adv. Mater. Struct. 24(15), 1247–1256 (2017)Google Scholar
  3. Cui, J., Du, J., Wang, J.: Study on SH Waves in Piezoelectric Structure with an Imperfectly Bonded Viscoelastic Layer. IEEE, Piscataway (2013)Google Scholar
  4. Curtis, R.G., Redwood, M.: Transverse surface waves on a piezoelectric material carrying a metal layer of finite thickness. J. Appl. Phys. 44(5), 2002–2007 (1973)Google Scholar
  5. Du, J., Harding, G.L., Ogilvy, J.A., Dcnchcr, P.R., Lake, M.: A study of Love-wave acoustic sensors. Sens. Actuators A 56(3), 211–219 (1996)Google Scholar
  6. Du, J., Xian, K., Wang, J., Yong, Y.K.: Propagation of Love waves in prestressed piezoelectric layered structures loaded with viscous liquid. Acta Mech. Solida Sin. 21(6), 542–548 (2008)Google Scholar
  7. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)MathSciNetzbMATHGoogle Scholar
  8. Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Propagation behavior of SH waves in layered piezoelectric/piezomagnetic plates. Acta Mech. 228(3), 1071–1081 (2017)Google Scholar
  9. Farokhi, H., Ghayesh, M.H.: Size-dependent behaviour of electrically actuated microcantilever-based MEMS. Int. J. Mech. Mater. Des. 12(3), 301–315 (2016)Google Scholar
  10. Fatemi, J., Keulen, F.V., Onck, P.R.: Generalized continuum theories: application to stress analysis in bone. Meccanica 37(4–5), 385–396 (2002)MathSciNetzbMATHGoogle Scholar
  11. Gaur, A.M.: Influence of stress on propagation of shear wave in piezoelectric-piezoelectric (PE-PE) composite layered structure. Latin Am. J. Solids Struct. 15(1), 1–9 (2018)MathSciNetGoogle Scholar
  12. Gaur, A.M., Rana, D.S.: Dispersion relations for SH waves propagation in a porous piezoelectric (PZT-PVDF) composite structure. Acta Mech. 226(12), 4017–4029 (2015)MathSciNetzbMATHGoogle Scholar
  13. Gauthier, R.D.: Experimental Investigation on Micropolar Media. Mechanics of Micropolar Media, pp. 395–463. World Scientific, Singapore (1982)Google Scholar
  14. Goyal, R., Kumar, S., Sharma, V.: A size-dependent micropolar-piezoelectric layered structure for the analysis of Love wave. Waves Random Complex Media 1, (2018).  https://doi.org/10.1080/17455030.2018.1542186 CrossRefGoogle Scholar
  15. Gubbins, D.: Seismology and Plate Tectonics. Cambridge University Press, Cambridge (1990)Google Scholar
  16. Huang, Y., Li, X.F.: Interfacial waves in dissimilar piezoelectric cubic crystals with an imperfect bonding. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(6), 1261–1265 (2011)Google Scholar
  17. Iesan, D.: Some applications of micropolar mechanics to earthquake problems. Int. J. Eng. Sci. 19(6), 855–864 (1981)zbMATHGoogle Scholar
  18. Jakoby, B., Vellekoop, M.J.: Properties of Love waves : applications in sensors. Smart Mater. Struct. 6(6), 668–679 (1997)Google Scholar
  19. Jin, F., Qian, Z., Wang, Z., Kishimoto, K.: Propagation behavior of Love waves in a piezoelectric layered structure with inhomogeneous initial stress. Smart Mater. Struct. 14(4), 515–523 (2005)Google Scholar
  20. Kaur, T., Sharma, S.K., Singh, A.K.: Influence of imperfectly bonded micropolar elastic half-space with non-homogeneous viscoelastic layer on propagation behavior of shear wave. Waves Random Complex Media 26(4), 650–670 (2016)MathSciNetzbMATHGoogle Scholar
  21. Kaur, T., Sharma, S.K., Singh, A.K.: Shear wave propagation in vertically heterogeneous viscoelastic layer over a micropolar elastic half-space. Mech. Adv. Mater. Struct. 24(2), 149–156 (2017)Google Scholar
  22. Kong, Y., Liu, J., Nie, G.: Propagation characteristics of SH wave in an mm2 piezoelectric layer on an elastic substrate. AIP Adv. 5(9), 097135 (2015)Google Scholar
  23. Li, P., Jin, F.: Excitation and propagation of shear horizontal waves in a piezoelectric layer imperfectly bonded to a metal or elastic substrate. Acta Mech. 226(2), 267–284 (2015)MathSciNetzbMATHGoogle Scholar
  24. Li, P., Jin, F., Lu, T.J.: A three-layer structure model for the effect of a soft middle layer on Love waves propagating in layered piezoelectric systems. Acta Mech. Sin. 28(4), 1087–1097 (2012)MathSciNetzbMATHGoogle Scholar
  25. Liu, C.: Foundations of MEMS, 2nd edn. Pearson, London (2011)Google Scholar
  26. Liu, H., Wang, Z.K., Wang, T.J.: Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure. Int. J. Solids Struct. 38(1), 37–51 (2001)zbMATHGoogle Scholar
  27. Liu, J.: A simple and accurate model for Love wave based sensors: dispersion equation and mass sensitivity. AIP Adv 4(7), 077102 (2014)Google Scholar
  28. Liu, J., He, S.: Theoretical analysis on Love waves in a layered structure with a piezoelectric substrate and multiple elastic layers. J. Appl. Phys. 107, 073511 (2010)Google Scholar
  29. Liu, J., Wang, L., Lu, Y., He, S.: Properties of Love waves in a piezoelectric layered structure with a viscoelastic guiding layer. Smart Mater. Struct. 22(12), 125034 (2013)Google Scholar
  30. McGregor, M., Wheel, M.A.: On the coupling number and characteristic length of micropolar media of differing topology. Proc. R. Soc. A 470(2169), 20140150 (2014)Google Scholar
  31. Nie, G., Liu, J., Liu, X.: Propagation behavior of two transverse surface waves in a three-layer piezoelectric/piezomagnetic structure. Waves Random Complex Media 27(4), 637–663 (2017)MathSciNetGoogle Scholar
  32. Othman, M.I.A., Abd-Elaziz, E.M.: Effect of rotation on a micropolar magneto-thermoelastic solid in dual-phase-lag model under the gravitational field. Microsyst. Technol. 23(10), 4979–4987 (2017)Google Scholar
  33. Pabst, W.: Micropolar materials. Ceram. Silik. 90(3), 170–180 (2005)Google Scholar
  34. Park, H.C., Lakes, R.S.: Cosserat micromechanics of human bone: strain redistribution by a hydration sensitive constituent. J. Biomech. 19(5), 385–397 (1986)Google Scholar
  35. Ravindra, R.: Usual assumptions in the treatment of wave propagation in heterogeneous elastic media. Pure Appl. Geophys. 70(1), 12–17 (1968)Google Scholar
  36. Romeo, M.: Interfacial viscoelastic SH waves. Int. J. Solids Struct. 40(9), 2057–2068 (2003)zbMATHGoogle Scholar
  37. Sahu, S.A., Saroj, P.K., Dewangan, N.: SH-waves in viscoelastic heterogeneous layer over half-space with self-weight. Arch. Appl. Mech. 84(2), 235–245 (2014)zbMATHGoogle Scholar
  38. Schoenberg, M.: Transmission and reflection of plane waves at an elastic-viscoelastic interface. Geophys. J. Int. 25(1–3), 35–47 (1971)zbMATHGoogle Scholar
  39. Shaw, R.P., Bugl, P.: Transmission of plane waves through layered linear viscoelastic media. J. Acoust. Soc. Am. 46(3), 649–654 (1969)Google Scholar
  40. Simonetti, F., Peter Cawley, P.: On the nature of shear horizontal wave propagation in elastic plates coated with viscoelastic materials. Proc. R. Soc. A 460(2048), 2197–2221 (2004)zbMATHGoogle Scholar
  41. Singh, A.K., Kumar, S., Chattopadhyay, A.: Love-type wave propagation in a piezoelectric structure with irregularity. Int. J. Eng. Sci. 89, 35–60 (2015)MathSciNetzbMATHGoogle Scholar
  42. Son, M.S., Kang, Y.J.: Propagation behavior of SH waves in layered piezoelectric plates. J. Mech. Sci. Technol. 25(3), 613–619 (2011)Google Scholar
  43. Tomar, S.K., Kaur, J.: Shear waves at a corrugated interface between anisotropic elastic and visco-elastic solid half-spaces. J. Seismol. 11(3), 235–258 (2007)Google Scholar
  44. Voiculescu, I., Nordin, A.: Acoustic Wave Based MEMS Devices, Development and Applications. In: Islam, N. (ed.) Microelectromechanical Systems and Devices, Chapt. 4, pp. 65–86. InTech (2012)Google Scholar
  45. Wang, H.M., Zhao, Z.C.: Love waves in a two-layered piezoelectric/elastic composite plate with an imperfect interface. Arch. Appl. Mech. 83(1), 43–51 (2013)zbMATHGoogle Scholar
  46. Wang, L., Liu, J., He, S.: The development of Love wave-based humidity sensors incorporating multiple layers. Sensors 15(4), 8615–8623 (2015)Google Scholar
  47. Wong, Eric W., Sheehan, Paul E., Lieber, Charles M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997)Google Scholar
  48. Yang, J.F.C., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)Google Scholar
  49. Zakharenko, A.A.: Love-type waves in layered systems consisting of two cubic piezoelectric crystals. J. Sound Vib. 285(4–5), 877–886 (2005)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of MathematicsThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations