Advertisement

A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation

  • Hamed SafarpourEmail author
  • Zanyar Esmailpoor Hajilak
  • Mostafa Habibi
Article

Abstract

In this paper, thermal buckling and free/forced vibration characteristics of size-dependent composite cylindrical nanoshell reinforced with graphene platelets (GPLs) is presented. Also, the nanoshell is embedded in an elastic pasternak medium, which is obtained by adding a shear layer to the Winkler model. The present nano-resonator is based on a vibrating first order nanoscale cylindrical shell subjected to transverse pressure. The temperature-dependent material properties of piece-wise functionally graded graphene-reinforced composites (FG-GRCs) are assumed to be graded in the thickness direction of a cylindrical nanoshell and are estimated through a nanomechanical model. Also, Halpin–Tsai nanomechanical model in used to surmise the effective material properties of each layer. The size-dependent FG-GRCs nanoshell is analyzed using modified couple stress parameter. The novelty of the current study is in considering the effects of FG-GRCs and thermal in addition of size effect on resonance frequencies, thermal buckling and dynamic deflections of the FG-GRCs nanoshell. The governing equations and boundary conditions have been developed using Hamilton’s principle and have been solved with the aid of analytical method. The results show that, GPL distribution pattern, modified couple stress parameter, length to radius ratio, mode number, winkler coefficient and thermal environment have important role on resonance frequency, relative frequency change, thermal buckling and dynamic deflections of the FG-GRCs cylindrical nanoshell in thermal environments.

Keywords

Elastic foundation Forced vibration Graphene nanoplatelet Thermal buckling Analytical method Multilayer cylindrical nanoshell Modified couple stress parameter 

References

  1. Ansari, R., Gholami, R., Rouhi, H.: Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories. Compos. B Eng. 43, 2985–2989 (2012)CrossRefGoogle Scholar
  2. Asghari, M., Kahrobaiyan, M., Rahaeifard, M., Ahmadian, M.: Investigation of the size effects in Timoshenko beams based on the couple stress theory. Arch. Appl. Mech. 81, 863–874 (2011)CrossRefzbMATHGoogle Scholar
  3. Atanasov, M.S., Karličić, D., Kozić, P.: Forced transverse vibrations of an elastically connected nonlocal orthotropic double-nanoplate system subjected to an in-plane magnetic field. Acta Mech. 228, 2165–2185 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Baibarac, M., Gómez-Romero, P.: Nanocomposites based on conducting polymers and carbon nanotubes: from fancy materials to functional applications. J. Nanosci. Nanotechnol. 6, 289–302 (2006)CrossRefGoogle Scholar
  5. Barati, M.R.: A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates. Eur. J. Mech. A/Solids 67, 215–230 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Barooti, M.M., Safarpour, H., Ghadiri, M.: Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations. Eur. Phys. J. Plus 132, 6 (2017)CrossRefGoogle Scholar
  7. Barretta, R., Marotti de Sciarra, F.: A nonlocal model for carbon nanotubes under axial loads. Adv. Mater. Sci. Eng. 2013, 1–8 (2013)CrossRefGoogle Scholar
  8. Barretta, R., Brčić, M., Čanađija, M., Luciano, R., de Sciarra, F.M.: Application of gradient elasticity to armchair carbon nanotubes: size effects and constitutive parameters assessment. Eur. J. Mech. A/Solids 65, 1–13 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Baughman, R.H., Zakhidov, A.A., De Heer, W.A.: Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002)CrossRefGoogle Scholar
  10. Čanađija, M., Barretta, R., de Sciarra, F.M.: On functionally graded Timoshenko nonisothermal nanobeams. Compos. Struct. 135, 286–296 (2016)CrossRefGoogle Scholar
  11. de Sciarra, F.M., Salerno, M.: On thermodynamic functions in thermoelasticity without energy dissipation. Eur. J. Mech. A/Solids 46, 84–95 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Eslami, M., Ziaii, A., Ghorbanpour, A.: Thermoelastic buckling of thin cylindrical shells based on improved stability equations. J. Therm. Stresses 19, 299–315 (1996)CrossRefGoogle Scholar
  13. Feng, C., Kitipornchai, S., Yang, J.: Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos. B Eng. 110, 132–140 (2017)CrossRefGoogle Scholar
  14. Fu, Y., Du, H., Huang, W., Zhang, S., Hu, M.: TiNi-based thin films in MEMS applications: a review. Sens. Actuators A Phys. 112, 395–408 (2004)CrossRefGoogle Scholar
  15. Ghadiri, M., Safarpour, H.: Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory. Appl. Phys. A 122, 833 (2016)CrossRefGoogle Scholar
  16. Huang, H., Han, Q.: Buckling of imperfect functionally graded cylindrical shells under axial compression. Eur. J. Mech. A/Solids 27, 1026–1036 (2008)CrossRefzbMATHGoogle Scholar
  17. Khanade, K., Sasangohar, F., Sadeghi, M., Sutherland, S., Alexander, K.: Deriving information requirements for a smart nursing system for intensive care units. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 653–654 (2017)Google Scholar
  18. Kolter, W.: Couple stresses in the theory of elasticity. Proc. Koninklijke Nederl. Akaad. van Wetensch 67, 20 (1964)MathSciNetGoogle Scholar
  19. Kothurkar, N.K.: Solid State, Transparent, Cadmium Sulfide-Polymer Nanocomposites. University of Florida, Gainesville (2004)Google Scholar
  20. Lee, Z., Ophus, C., Fischer, L., Nelson-Fitzpatrick, N., Westra, K., Evoy, S., et al.: Metallic NEMS components fabricated from nanocomposite Al–Mo films. Nanotechnology 17, 3063 (2006)CrossRefGoogle Scholar
  21. Li, M., Liu, J., Zhang, X., Tian, Y., Jiang, K.: Fabrication of graphene/nickel composite microcomponents using electroforming. Int. J. Adv. Manuf. Technol. 96, 3191–3196 (2018)CrossRefGoogle Scholar
  22. Mescher, M.J., Houston, K., Bernstein, J.J., Kirkos, G., Cheng, J., Cross, L.E.: Novel MEMS microshell transducer arrays for high-resolution underwater acoustic imaging applications. In: Sensors, 2002. Proceedings of IEEE, pp. 541–546 (2002)Google Scholar
  23. Miandoab, E.M., Pishkenari, H.N., Yousefi-Koma, A., Hoorzad, H.: Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories. Physica E 63, 223–228 (2014)CrossRefGoogle Scholar
  24. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Mirzavand, B., Eslami, M.: Thermal buckling of imperfect functionally graded cylindrical shells based on the Wan-Donnell model. J. Therm. Stresses 29, 37–55 (2006)CrossRefGoogle Scholar
  26. Mirzavand, B., Eslami, M.R., Shahsiah, R.: Effect of imperfections on thermal buckling of functionally graded cylindrical shells. AIAA J 43, 2073–2076 (2005)CrossRefGoogle Scholar
  27. Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)CrossRefGoogle Scholar
  28. Montazeri, A., Rafii-Tabar, H.: Multiscale modeling of graphene-and nanotube-based reinforced polymer nanocomposites. Phys. Lett. A 375, 4034–4040 (2011)CrossRefGoogle Scholar
  29. Mortazavi, B., Benzerara, O., Meyer, H., Bardon, J., Ahzi, S.: Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon 60, 356–365 (2013)CrossRefGoogle Scholar
  30. Park, S., Gao, X.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355 (2006)CrossRefGoogle Scholar
  31. Potts, J.R., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S.: Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011)CrossRefGoogle Scholar
  32. Radhamoman, S., Enkataramana, J.: Thermal buckling of orthotropic cylindrical shells. AIAA J 13, 397–399 (1975)CrossRefGoogle Scholar
  33. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.-Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009a)CrossRefGoogle Scholar
  34. Rafiee, M., Rafiee, J., Yu, Z.-Z., Koratkar, N.: Buckling resistant graphene nanocomposites. Appl. Phys. Lett. 95, 223103 (2009b)CrossRefGoogle Scholar
  35. Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z.Z., et al.: Fracture and fatigue in graphene nanocomposites. Small 6, 179–183 (2010)CrossRefGoogle Scholar
  36. Rahaeifard, M., Kahrobaiyan, M., Ahmadian, M.: Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials. In: ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 539–544 (2009)Google Scholar
  37. Reddy, J.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59, 2382–2399 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  38. Sadeghi, M., Thomassie, R., Sasangohar, F.: Objective assessment of functional information requirements for patient portals. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 1788–1792 (2017)Google Scholar
  39. Sahmani, S., Aghdam, M.: A nonlocal strain gradient hyperbolic shear deformable shell model for radial postbuckling analysis of functionally graded multilayer GPLRC nanoshells. Compos. Struct. 178, 97–109 (2017a)CrossRefGoogle Scholar
  40. Sahmani, S., Aghdam, M.: Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. Int. J. Mech. Sci. 131, 95–106 (2017b)CrossRefGoogle Scholar
  41. Sandler, J., Kirk, J., Kinloch, I., Shaffer, M., Windle, A.: Ultra-low electrical percolation threshold in carbon-nanotube–epoxy composites. Polymer 44, 5893–5899 (2003)CrossRefGoogle Scholar
  42. Shaat, M., Mahmoud, F., Gao, X.-L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014)CrossRefGoogle Scholar
  43. Shahsiah, R., Eslami, M.: Thermal buckling of functionally graded cylindrical shell. J. Therm. Stresses 26, 277–294 (2003)CrossRefGoogle Scholar
  44. Shojaeian, M., Beni, Y.T.: Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges. Sens. Actuators A Phys. 112, 395–408 (2015)Google Scholar
  45. Soltani, P., Saberian, J., Bahramian, R.: Nonlinear vibration analysis of single-walled carbon nanotube with shell model based on the nonlocal elasticity theory. J. Comput. Nonlinear Dyn. 11, 011002 (2016)CrossRefGoogle Scholar
  46. Song, M., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)CrossRefGoogle Scholar
  47. Tadi Beni, Y., Mehralian, F., Zeighampour, H.: The modified couple stress functionally graded cylindrical thin shell formulation. Mech. Adv. Mater. Struct. 23, 791–801 (2016)CrossRefzbMATHGoogle Scholar
  48. Thangaratnam, R.K., Palaninathan, R., Ramachandran, J.: Thermal buckling of laminated composite shells. AIAA J 28, 859–860 (1990)CrossRefzbMATHGoogle Scholar
  49. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  50. Vafamehr, A., Khodayar, M.E., Abdelghany, K.: Oligopolistic competition among cloud providers in electricity and data networks. IEEE Trans. Smart Grid (2017).  https://doi.org/10.1109/TSG.2017.2778027 Google Scholar
  51. Vafamehr, A., Khodayar, M.E.: Energy-aware cloud computing. Electr. J. 31, 40–49 (2018)CrossRefGoogle Scholar
  52. Vafamehr, A., Khodayar, M.E., Manshadi, S.D., Ahmad, I., Lin, J.: A framework for expansion planning of data centers in electricity and data networks under uncertainty. IEEE Trans. Smart Grid 6, 2283–2393 (2017)Google Scholar
  53. Wang, Y., Yu, J., Dai, W., Song, Y., Wang, D., Zeng, L., et al.: Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanoplatelets. Polym. Compos. 36, 556–565 (2015)CrossRefGoogle Scholar
  54. Witvrouw, A., Mehta, A.: The use of functionally graded poly-SiGe layers for MEMS applications. Mater. Sci. Forum 492, 255–260 (2005)CrossRefGoogle Scholar
  55. Wu, H., Kitipornchai, S., Yang, J.: Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates. Mater. Des. 132, 430–441 (2017)CrossRefGoogle Scholar
  56. Yang, F., Chong, A., Lam, D., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)CrossRefzbMATHGoogle Scholar
  57. Yang, J., Wu, H., Kitipornchai, S.: Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanics, Faculty of EngineeringImam Khomeini International UniversityQazvinIran
  2. 2.Department of Mechanical EngineeringKN Toosi University of TechnologyTehranIran
  3. 3.Center of Excellence in Design, Robotics and Automation, School of Mechanical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations