Advertisement

Overall thermal conductivity of unidirectional hybrid polymer nanocomposites containing SiO2 nanoparticles

  • M. J. MahmoodiEmail author
  • M. K. Hassanzadeh-Aghdam
  • R. AnsariEmail author
Article

Abstract

A physics-based nested hierarchical approach is established to investigate thermal conducting behavior of micro-filler (in the form of particle, short and long fiber)/nanoparticle-reinforced polymer hybrid nanocomposites. An effort is made to develop a unit cell-based micromechanical model predicting the thermal conductivities of general composite systems, including microscale filler-reinforced composites, nanoparticle-reinforced nanocomposites and microscale filler/nanoparticle-reinforced hybrid nanocomposites. The role of the nanoparticle/polymer interfacial thermal resistance is also considered in the analysis. The developed model presents a reasonable behavior compared with available experiments and other modeling methods for the thermal properties of composites and nanocomposites. The results are provided for two types of hybrid nanocomposites, including carbon micro-filler/silica (SiO2) nanoparticle-reinforced epoxy and glass micro-filler/SiO2 nanoparticle-reinforced epoxy systems. It is found that transverse thermal conducting behavior of general fibrous composites is significantly affected by adding the nanoparticles. However, due to the dominated role of the carbon fiber in the longitudinal direction, the longitudinal thermal conductivity of carbon fiber-reinforced composites is not influenced by the nanoparticles. Also, the thermal conductivities of both randomly oriented short fiber-reinforced composite and particulate composite systems can be improved with the addition of the nanoparticles. The obtained results could be useful to guide the design of hybrid nanocomposites with optimal thermal conductivities.

Keywords

Hybrid nanocomposite Thermal conductive properties Micromechanics Interfacial thermal resistance 

Notes

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites. Int. J. Mech. Sci. 115, 45–55 (2016)CrossRefGoogle Scholar
  2. Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical characterizing elastic, thermoelastic and viscoelastic properties of functionally graded carbon nanotube reinforced polymer nanocomposites. Meccanica 52(7), 1625–1640 (2017)CrossRefGoogle Scholar
  3. Ansari, R., Hassanzadeh-Aghdam, M.K., Darvizeh, A.: On elastic modulus and biaxial initial yield surface of carbon nanotube-reinforced aluminum nanocomposites. Mech. Mater. 101, 14–26 (2016)CrossRefGoogle Scholar
  4. Beicha, D., Kanit, T., Brunet, Y., Imad, A., El Moumen, A., Khelfaoui, Y.: Effective transverse elastic properties of unidirectional fiber reinforced composites. Mech. Mater. 102, 47–53 (2016)CrossRefGoogle Scholar
  5. Cairo, C.A.A., Florian, M., Graca, M.L.A., Bressiani, J.C.: Kinetic study by TGA of the effect of oxidation inhibitors for carbon–carbon composite. Mater. Sci. Eng. A 358(1), 298–303 (2003)CrossRefGoogle Scholar
  6. Chen, L., Sun, Y.Y., Xu, H.F., He, S.J., Wei, G.S., Du, X.Z., Lin, J.: Analytic modeling for the anisotropic thermal conductivity of polymer composites containing aligned hexagonal boron nitride. Compos. Sci. Technol. 122, 42–49 (2016)CrossRefGoogle Scholar
  7. Duong, H.M., Yamamoto, N., Bui, K., Papavassiliou, D.V., Maruyama, S., Wardle, B.L.: Morphology effects on nonisotropic thermal conduction of aligned single-walled and multi-walled carbon nanotubes in polymer nanocomposites. J. Phys. Chem. C 114(19), 8851–8860 (2010)CrossRefGoogle Scholar
  8. Eslami, Z., Yazdani, F., Mirzapour, M.A.: Thermal and mechanical properties of phenolic-based composites reinforced by carbon fibres and multiwall carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 72, 22–31 (2015)CrossRefGoogle Scholar
  9. Guthy, C., Du, F., Brand, S., Winey, K.I., Fischer, J.E.: Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites. J. Heat Transf. 129(8), 1096–1099 (2007)CrossRefGoogle Scholar
  10. Haggenmueller, R., Guthy, C., Lukes, J.R., Fischer, J.E., Winey, K.I.: Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40(7), 2417–2421 (2007)CrossRefGoogle Scholar
  11. Han, Z., Fina, A.: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36(7), 914–944 (2011)CrossRefGoogle Scholar
  12. Hassanzadeh-Aghdam, M.K., & Ansari, R.: Thermomechanical investigation of unidirectional carbon fiber-polymer hybrid composites containing CNTs. Int. J. Mech. Mater. Des. 1–18 (2018).  https://doi.org/10.1007/s10999-018-9418-5
  13. Hassanzadeh-Aghdam, M.K., Ansari, R., Darvizeh, A.: Micromechanical modeling of thermal expansion coefficients for unidirectional glass fiber-reinforced polyimide composites containing silica nanoparticles. Compos. Part A Appl. Sci. Manuf. 96, 110–121 (2017)CrossRefGoogle Scholar
  14. Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Jamali, J.: Effect of CNT coating on the overall thermal conductivity of unidirectional polymer hybrid nanocomposites. Int. J. Heat Mass Transf. 124, 190–200 (2018a)CrossRefGoogle Scholar
  15. Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Kazempour, M.R.: The role of thermal residual stress on the yielding behavior of carbon nanotube–aluminum nanocomposites. Int. J. Mech. Mater. Des. 14(2), 263–275 (2018b)CrossRefGoogle Scholar
  16. Hassanzadeh-Aghdam, M.K., Ansari, R., Darvizeh, A.: Multi-stage micromechanical modeling of effective elastic properties of carbon fiber/carbon nanotube-reinforced polymer hybrid composites. Mech. Adv. Mater. Struct. 1–15 (2018c).  https://doi.org/10.1080/15376494.2018.1472336
  17. Islam, M.R., Pramila, A.: Thermal conductivity of fiber reinforced composites by the FEM. J. Compos. Mater. 33(18), 1699–1715 (1999)CrossRefGoogle Scholar
  18. Khoddam, S., Tian, L., Sapanathan, T., Hodgson, P.D., Zarei-Hanzaki, A.: Latest developments in modeling and characterization of joining metal based hybrid materials. Adv. Eng. Mater. (2018).  https://doi.org/10.1002/adem.201800048 Google Scholar
  19. Kim, Y.A., Kamio, S., Tajiri, T., Hayashi, T., Song, S.M., Endo, M., Terrones, M., Dresselhaus, M.S.: Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl. Phys. Lett. 90(9), 093125 (2007)CrossRefGoogle Scholar
  20. Kochetov, R., Korobko, A.V., Andritsch, T., Morshuis, P.H.F., Picken, S.J., Smit, J.J.: Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J. Phys. D Appl. Phys. 44(39), 395401 (2011)CrossRefGoogle Scholar
  21. Kumlutas, D., Tavman, I.H.: A numerical and experimental study on thermal conductivity of particle filled polymer composites. J. Thermoplast. Compos. Mater. 19(4), 441–455 (2006)CrossRefGoogle Scholar
  22. Kundalwal, S.I., Meguid, S.A.: Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech.-A/Solids 53, 241–253 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites. Eur. J. Mech.-A/Solids 64, 69–84 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Kundalwal, S.I., Ray, M.C.: Micromechanical analysis of fuzzy fiber reinforced composites. Int. J. Mech. Mater. Des. 7(2), 149–166 (2011)CrossRefGoogle Scholar
  25. Kundalwal, S.I., Ray, M.C.: Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mech. 225(9), 2621–2643 (2014a)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Kundalwal, S.I., Ray, M.C.: Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite. Int. J. Therm. Sci. 76, 90–100 (2014b)CrossRefGoogle Scholar
  27. Kundalwal, S.I., Kumar, R.S., Ray, M.C.: Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes. Int. J. Heat Mass Transf. 72, 440–451 (2014)CrossRefGoogle Scholar
  28. Liang, J.Z.: Estimation of thermal conductivity for polypropylene/hollow glass bead composites. Compos. B Eng. 56, 431–434 (2014)CrossRefGoogle Scholar
  29. Liu, Y.J., Xu, N., Luo, J.F.: Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method. J. Appl. Mech. 67(1), 41–49 (2000)CrossRefzbMATHGoogle Scholar
  30. Mahmoodi, M.J., Maleki, M., Hassanzadeh-Aghdam, M.K.: Static bending and free vibration analysis of hybrid fuzzy fiber reinforced nanocomposite beam-A multiscale modeling. Int. J. Appl. Mech. 10(5), 1850053(1–36) (2018)CrossRefGoogle Scholar
  31. McIvor, S.D., Darby, M.I., Wostenholm, G.H., Yates, B., Banfield, L., King, R., Webb, A.: Thermal conductivity measurements of some glass fibre-and carbon fibre-reinforced plastics. J. Mater. Sci. 25(7), 3127–3132 (1990)CrossRefGoogle Scholar
  32. Minnich, A., Chen, G.: Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91(7), 073105 (2007)CrossRefGoogle Scholar
  33. Nayak, R., Tarkes, D.P., Satapathy, A.: A computational and experimental investigation on thermal conductivity of particle reinforced epoxy composites. Comput. Mater. Sci. 48(3), 576–581 (2010)CrossRefGoogle Scholar
  34. Park, H.J., Badakhsh, A., Im, I.T., Kim, M.S., Park, C.W.: Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites. Appl. Therm. Eng. 107, 907–917 (2016)CrossRefGoogle Scholar
  35. Pegorin, F., Pingkarawat, K., Mouritz, A.P.: Controlling the electrical conductivity of fibre-polymer composites using z-pins. Compos. Sci. Technol. 150, 167–173 (2017)CrossRefGoogle Scholar
  36. Ray, M.C.: A shear lag model of piezoelectric composite reinforced with carbon nanotubes-coated piezoelectric fibers. Int. J. Mech. Mater. Des. 6(2), 147–155 (2010)CrossRefGoogle Scholar
  37. Shen, M.X., Cui, Y.X., He, J., Zhang, Y.M.: Thermal conductivity model of filled polymer composites. Int. J. Miner. Metall. Mater. 18(5), 623–631 (2011)CrossRefGoogle Scholar
  38. Sprenger, S.: Improving mechanical properties of fiber-reinforced composites based on epoxy resins containing industrial surface-modified silica nanoparticles: review and outlook. J. Compos. Mater. 49(1), 53–63 (2015)MathSciNetCrossRefGoogle Scholar
  39. Sweeting, R.D., Liu, X.L.: Measurement of thermal conductivity for fibre-reinforced composites. Compos. Part A Appl. Sci. Manuf. 35(7), 933–938 (2004)CrossRefGoogle Scholar
  40. Tang, Y., Ye, L., Zhang, D., Deng, S.: Characterization of transverse tensile, interlaminar shear and interlaminate fracture in CF/EP laminates with 10wt% and 20wt% silica nanoparticles in matrix resins. Compos. Part A Appl. Sci. Manuf. 42(12), 1943–1950 (2011)CrossRefGoogle Scholar
  41. Tian, L., Anderson, I., Riedemann, T., Russell, A.: Modeling the electrical resistivity of deformation processed metal–metal composites. Acta Mater. 77, 151–161 (2014)CrossRefGoogle Scholar
  42. Tourani, H., Molazemhosseini, A., Khavandi, A., Mirdamadi, S., Shokrgozar, M.A., Mehrjoo, M.: Effects of fibers and nanoparticles reinforcements on the mechanical and biological properties of hybrid composite polyetheretherketone/short carbon fiber/Nano-SiO2. Polym. Compos. 34(11), 1961–1969 (2013)CrossRefGoogle Scholar
  43. Uddin, M.F., Sun, C.T.: Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Compos. Sci. Technol. 68(7), 1637–1643 (2008)CrossRefGoogle Scholar
  44. Wang, S., Qiu, J.: Enhancing thermal conductivity of glass fiber/polymer composites through carbon nanotubes incorporation. Compos. B Eng. 41(7), 533–536 (2010)CrossRefGoogle Scholar
  45. Wetherhold, R.C., Wang, J.: Difficulties in the theories for predicting transverse thermal conductivity of continuous fiber composites. J. Compos. Mater. 28(15), 1491–1498 (1994)CrossRefGoogle Scholar
  46. Zeng, T., Chen, G.: Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation. Trans. Am. Soc. Mech. Eng. J. Heat Transf. 123(2), 340–347 (2001)CrossRefGoogle Scholar
  47. Zhang, S., Cao, X.Y., Ma, Y.M., Ke, Y.C., Zhang, J.K., Wang, F.S.: The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express Polym. Lett. 5(7), 581–590 (2011)CrossRefGoogle Scholar
  48. Zweben, C.: Advances in high-performance thermal management materials: a review. J. Adv. Mater. 39(1), 3–10 (2007)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of Civil, Water and Environmental EngineeringShahid Beheshti UniversityTehranIran
  2. 2.Department of Mechanical EngineeringUniversity of GuilanRashtIran

Personalised recommendations