Fracture mechanics analysis of an anti-plane crack in gradient elastic sandwich composite structures

  • Jine LiEmail author
  • Baolin Wang


The strain gradient elasticity theory is applied to the solution of a mode III crack in an elastic layer sandwiched by two elastic layers of infinite thickness. The model includes volumetric and surface strain gradient characteristic length parameters. Both the near-tip asymptotic stresses and the crack displacement are obtained. Due to stain gradient effects, the magnitudes of the stress ahead of the crack tip are significantly higher than those in the classical linear elastic fracture mechanics. When the gradient parameters reduce to sufficiently small, all results reduce to the conventional linear elastic fracture mechanics results. In addition to the single crack in the finite layer, the solution and the results for two collinear cracks are also established and given.


Strain gradient elasticity Layered structure Anti-plane fracture Crack tip field Collinear crack 



This work was supported by the National Natural Science Foundation of China (Project Nos. 11502101, 11672084, 11372086), Research Innovation Foundation of Jinling Institute of Technology, China (Project No. jit-b-201515), and Research Innovation Fund of Shenzhen City of China (Project No. JCYJ20170413104256729).


  1. Chan, Y.S., Fannjiang, A.C., Glaucio, H.: Integral equations with hypersingular kernels—theory and applications to fracture mechanics. Int. J. Eng. Sci. 41, 683–720 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Chan, Y.S., Paulino, G.H., Fannjiang, A.C.: Gradient elasticity theory for mode III fracture in functionally graded materials-part II: crack parallel to the material gradation. J. Appl. Mech. 75, 061015 (2008)CrossRefGoogle Scholar
  3. Exadaktylos, G.: Gradient elasticity with surface energy: mode-I crack problem. Int. J. Solids Struct. 35, 421–456 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Exadaktylos, G., Vardoulakis, I., Aifantis, E.: Cracks in gradient elastic bodies with surface energy. Int. J. Fract. 79, 107–119 (1996)CrossRefzbMATHGoogle Scholar
  5. Fang, T.H., Li, W.L., Tao, N.R., Lu, K.: Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331, 1587–1590 (2011)CrossRefGoogle Scholar
  6. Fannjiang, A.C., Paulino, G.H., Chan, Y.S.: Strain gradient elasticity for antiplane shear cracks: a hypersingular integrodifferential equation approach. SIAM J. Appl. Math. 62, 1066–1091 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)CrossRefGoogle Scholar
  8. Giannakopoulos, A., Stamoulis, K.: Structural analysis of gradient elastic components. Int. J. Solids Struct. 44, 3440–3451 (2007)CrossRefzbMATHGoogle Scholar
  9. Joseph, R.P., Wang, B.L., Samali, B.: Strain gradient fracture in an anti-plane cracked material layer. Int. J. Solids Struct. 146, 214–223 (2018)CrossRefGoogle Scholar
  10. Karimipour, I., Fotuhi, A.R.: Anti-plane analysis of an infinite plane with multiple cracks based on strain gradient theory. Acta Mech. 228, 1793–1817 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)CrossRefzbMATHGoogle Scholar
  12. Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)CrossRefGoogle Scholar
  13. McElhaney, K.W., Vlassak, J.J., Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 5, 1300–1306 (1998)CrossRefGoogle Scholar
  14. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)CrossRefGoogle Scholar
  15. Mousavi, S.M., Aifantis, E.: A note on dislocation-based mode III gradient elastic fracture mechanics. J. Mech. Behav. Mater. 24, 115–119 (2005)Google Scholar
  16. Paulino, G., Fannjiang, A., Chan, Y.-S.: Gradient elasticity theory for mode III fracture in functionally graded materials—part I: crack perpendicular to the material gradation. J. Appl. Mech. 70, 531–542 (2003)CrossRefzbMATHGoogle Scholar
  17. Piccolroaz, A., Mishuris, G., Radi, E.: Mode III interfacial crack in the presence of couple-stress elastic materials. Eng. Fract. Mech. 80, 60–71 (2012)CrossRefzbMATHGoogle Scholar
  18. Poole, W.J., Ashby, M.F., Fleck, N.A.: Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Mater. 34, 559–564 (1996)CrossRefGoogle Scholar
  19. Qiu, Y., Wu, H., Wang, J., Lou, J., Zhang, Z., Liu, A., Chai, G.: The enhanced piezoelectricity in compositionally graded ferroelectric thin films under electric field: a role of flexoelectric effect. J. Appl. Phys. 123, 084103 (2018)CrossRefGoogle Scholar
  20. Shi, M., Wu, H., Li, L., Chai, G.: Calculation of stress intensity factors for functionally graded materials by using the weight functions derived by the virtual crack extension technique. Int. J. Mech. Mater. Des. 10, 65–77 (2014)CrossRefGoogle Scholar
  21. Stolken, J.S.: The Role of Oxygen in Nickel–Sapphire Interface Fracture. Ph.D. Dissertation, University of California, Santa Barbara (1997)Google Scholar
  22. Thevamaran, R., Lawal, O., Yazdi, S., Jeon, S., Lee, J.-H., Thomas, E.: Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes. Science 354, 312–316 (2016)CrossRefGoogle Scholar
  23. Vardoulakis, I., Exadaktylos, G., Aifantis, E.: Gradient elasticity with surface energy: mode-III crack problem. Int. J. Solids Struct. 33, 4531–4559 (1996)CrossRefzbMATHGoogle Scholar
  24. Wei, Y.: A new finite element method for strain gradient theories and applications to fracture analyses. Eur. J. Mech. A. Solids 25, 897–913 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Wu, H., Li, L., Chai, G., Song, F., Kitamura, T.: Three-dimensional thermal weight function method for the interface crack problems in bimaterial structures under a transient thermal loading. J. Therm. Stress. 39, 371–385 (2016a)CrossRefGoogle Scholar
  26. Wu, H., Ma, X., Zhang, Z., Zhu, J., Wang, J., Chai, G.: Dielectric tunability of vertically aligned ferroelectric-metal oxide nanocomposite films controlled by out-of-plane misfit strain. J. Appl. Phys. 119, 154102 (2016b)CrossRefGoogle Scholar
  27. Zeng, Z., Li, X., Xu, D., Lu, L., Gao, H., Zhu, T.: Gradient plasticity in gradient nano-grained metals. Extreme Mech. Lett. 8, 213–219 (2016)CrossRefGoogle Scholar
  28. Zhang, L., Huang, Y., Chen, Y.J., Hwang, K.C.: The mode III full-field solution in elastic materials with strain gradient effects. Int. J. Fract. 92, 325–348 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Architectural EngineeringJinling Institute of TechnologyNanjingPeople’s Republic of China
  2. 2.School of ScienceHarbin Institute of Technology (Shenzhen)ShenzhenPeople’s Republic of China
  3. 3.Centre for Infrastructure Engineering, School of Computation, Engineering and MathematicsWestern Sydney UniversitySydneyAustralia

Personalised recommendations