Advertisement

Thermomechanical investigation of unidirectional carbon fiber-polymer hybrid composites containing CNTs

  • M. K. Hassanzadeh-AghdamEmail author
  • R. Ansari
Article

Abstract

In this research, the thermoelastic response of unidirectional carbon fiber (CF)-reinforced polymer hybrid composites containing carbon nanotubes (CNTs) are analyzed using a physics-based hierarchical micromechanical modeling approach. The developed model consists of a unit cell-based scheme along with the Eshelby method which can consider random orientation, random distribution, directional behavior, non-straight shape of CNTs and interphase region generated due to the non-bonded van der Waals interaction between a CNT and the polymer matrix. The predictions are compared with the experimental data available in the literature and a quite good agreement is pointed out for the fibrous polymer composite, CNT-polymer nanocomposite and fiber/CNT-polymer hybrid composite systems. The influences of several factors, including volume fraction, aspect ratio, off-axis angle and arrangement type of CFs as well as CNT volume fraction on the thermoelastic behavior of CF/CNT-polymer hybrid composites are examined in detail. The results indicate that the transverse CTE of a unidirectional CF-reinforced composite is significantly improved due to the addition of CNTs, while the hybrid composite CTE in the longitudinal direction is negligibly affected by the CNTs. Also, it is found that the role of CNT in the hybrid composite thermoelastic behavior becomes more prominent as the CF aspect ratio decreases.

Keywords

Hybrid composites Carbon nanotube Thermoelastic response Micromechanics Random dispersion 

References

  1. Aghdam, M.M., Dezhsetan, A.: Micromechanics based analysis of randomly distributed fiber reinforced composites using simplified unit cell model. Compos. Struct. 71(3–4), 327–332 (2005)Google Scholar
  2. Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015a)Google Scholar
  3. Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes. Compos. Struct. 131, 545–555 (2015b)Google Scholar
  4. Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites. Int. J. Mech. Sci. 115, 45–55 (2016)Google Scholar
  5. Baxter, S.C., Robinson, C.T.: Pseudo-percolation: critical volume fractions and mechanical percolation in polymer nanocomposites. Compos. Sci. Technol. 71(10), 1273–1279 (2011)Google Scholar
  6. Bednarcyk, B.A., Arnold, S.M.: Transverse tensile and creep modeling of continuously reinforced titanium composites with local debonding. Int. J. Solids Struct. 39(7), 1987–2017 (2002)zbMATHGoogle Scholar
  7. Chouchaoui, C.S., Benzeggagh, M.L.: The effect of interphase on the elastic behavior of a glass/epoxy bundle. Compos. Sci. Technol. 57(6), 617–622 (1997)Google Scholar
  8. Craft, W.J., Christensen, R.M.: Coefficient of thermal expansion for composites with randomly oriented fibers. J. Compos. Mater. 15(1), 2–20 (1981)Google Scholar
  9. Dastgerdi, J.N., Marquis, G., Salimi, M.: The effect of nanotubes waviness on mechanical properties of CNT/SMP composites. Compos. Sci. Technol. 86, 164–169 (2013)Google Scholar
  10. Dong, C.: Mechanical and thermo-mechanical properties of carbon nanotube reinforced composites. Int. J. Smart Nano Mater. 5(1), 44–58 (2014)Google Scholar
  11. Feng, C., Jiang, L.: Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)-polymer nanocomposites. Compos. A Appl. Sci. Manuf. 47, 143–149 (2013)Google Scholar
  12. Fisher, F.T., Bradshaw, R.D., Brinson, L.C.: Fiber waviness in nanotube-reinforced polymer composites-I: modulus predictions using effective nanotube properties. Compos. Sci. Technol. 63(11), 1689–1703 (2003)Google Scholar
  13. Goldberg, R.K., Arnold, S.M.: A study of influencing factors on the tensile response of a titanium matrix composite with weak interfacial bonding. NASA/TM—2000-209798 (2000)Google Scholar
  14. Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J.: Micromechanical modeling of thermal conducting behavior of general carbon nanotube-polymer nanocomposites. Mater. Sci. Eng. B 229, 173–183 (2018)Google Scholar
  15. Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Ansari, R.: Micromechanics-based characterization of mechanical properties of fuzzy fiber-reinforced composites containing carbon nanotubes. Mech. Mater. 118, 31–43 (2018a)Google Scholar
  16. Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Jamali, J.: Effect of CNT coating on the overall thermal conductivity of unidirectional polymer hybrid nanocomposites. Int. J. Heat Mass Transf. 124, 190–200 (2018b)Google Scholar
  17. Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Kazempour, M.R.: The role of thermal residual stress on the yielding behavior of carbon nanotube–aluminum nanocomposites. Int. J. Mech. Mater. Des. 14, 263–275 (2018c)Google Scholar
  18. Hine, P.J., Lusti, H.R., Gusev, A.A.: Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites. Compos. Sci. Technol. 62(10–11), 1445–1453 (2002)Google Scholar
  19. Honjo, K.: Thermal stresses and effective properties calculated for fiber composites using actual cylindrically-anisotropic properties of interfacial carbon coating. Carbon 45(4), 865–872 (2007)Google Scholar
  20. Hu, N., Qiu, J., Li, Y., Chang, C., Atobe, S., Fukunaga, H., Liu, Y., Ning, H., Wu, L., Li, J., Yuan, W., Watanabe, T., Yan, C., Zhang, Y.: Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites. Nanoscale Res. Lett. 8(1), 15 (2013)Google Scholar
  21. Jasiuk, I., Kouider, M.W.: The effect of an inhomogeneous interphase on the elastic constants of transversely isotropic composites. Mech. Mater. 15(1), 53–63 (1993)Google Scholar
  22. Jia, Y., Chen, Z., Yan, W.: A numerical study on carbon nanotube-hybridized carbon fibre pullout. Compos. Sci. Technol. 91, 38–44 (2014)Google Scholar
  23. Kaleemullah, M., Khan, S.U., Kim, J.K.: Effect of surfactant treatment on thermal stability and mechanical properties of CNT/polybenzoxazine nanocomposites. Compos. Sci. Technol. 72(16), 1968–1976 (2012)Google Scholar
  24. Karadeniz, Z.H., Kumlutas, D.: A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Compos. Struct. 78(1), 1–10 (2007)Google Scholar
  25. Kim, Y.A., Kamio, S., Tajiri, T., Hayashi, T., Song, S.M., Endo, M., Terrones, M., Dresselhaus, M.S.: Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl. Phys. Lett. 90(9), 093125 (2007)Google Scholar
  26. Kim, M.T., Rhee, K.Y., Lee, J.H., Hui, D., Lau, A.K.: Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Compos. B Eng. 42(5), 1257–1261 (2011)Google Scholar
  27. Kulkarni, M., Carnahan, D., Kulkarni, K., Qian, D., Abot, J.L.: Elastic response of a carbon nanotube fiber reinforced polymeric composite: a numerical and experimental study. Compos. B Eng. 41(5), 414–421 (2010)Google Scholar
  28. Kundalwal, S.I., Kumar, S.: Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase. Mech. Mater. 102, 117–131 (2016)Google Scholar
  29. Kundalwal, S.I., Meguid, S.A.: Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells. Acta Mech. 226(6), 2035–2052 (2015a)MathSciNetzbMATHGoogle Scholar
  30. Kundalwal, S.I., Meguid, S.A.: Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech. A/Solids 53, 241–253 (2015b)MathSciNetzbMATHGoogle Scholar
  31. Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites. Eur. J. Mech. A/Solids 64, 69–84 (2017)MathSciNetzbMATHGoogle Scholar
  32. Kundalwal, S.I., Ray, M.C.: Micromechanical analysis of fuzzy fiber reinforced composites. Int. J. Mech. Mater. Des. 7(2), 149–166 (2011)Google Scholar
  33. Kundalwal, S.I., Ray, M.C.: Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes. Mech. Mater. 53, 47–60 (2012a)Google Scholar
  34. Kundalwal, S.I., Ray, M.C.: Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method. Eur. J. Mech. A/Solids 36, 191–203 (2012b)Google Scholar
  35. Kundalwal, S.I., Ray, M.C.: Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Compos. B Eng. 57, 199–209 (2014)Google Scholar
  36. Li, C., Chou, T.W.: Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. Compos. Sci. Technol. 66(14), 2409–2414 (2006)Google Scholar
  37. Liao, K., Li, S.: Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl. Phys. Lett. 79(25), 4225–4227 (2001)Google Scholar
  38. Lurie, S.A., Volkov-Bogorodskiy, D.B., Menshykov, O., Solyaev, Y.O., Aifantis, E.C.: Modeling the effective mechanical properties of “fuzzy fiber” composites across scales length. Compos. B Eng. 142, 24–35 (2018)Google Scholar
  39. Ma, X., Scarpa, F., Peng, H.X., Allegri, G., Yuan, J., Ciobanu, R.: Design of a hybrid carbon fibre/carbon nanotube composite for enhanced lightning strike resistance. Aerosp. Sci. Technol. 47, 367–377 (2015)Google Scholar
  40. Mahmoodi, M.J., Aghdam, M.M.: Damage analysis of fiber reinforced Ti-alloy subjected to multi-axial loading—a micromechanical approach. Mater. Sci. Eng. A 528(27), 7983–7990 (2011)Google Scholar
  41. Mahmoodi, M.J., Vakilifard, M.: A comprehensive micromechanical modeling of electro-thermo-mechanical behaviors of CNT reinforced smart nanocomposites. Mater. Des. 122, 347–365 (2017)Google Scholar
  42. Mathur, R.B., Chatterjee, S., Singh, B.P.: Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol. 68(7), 1608–1615 (2008)Google Scholar
  43. Miyagawa, H., Mase, T., Sato, C., Drown, E., Drzal, L.T., Ikegami, K.: Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon 44(10), 2002–2008 (2006)Google Scholar
  44. Pal, G., Kumar, S.: Multiscale modeling of effective electrical conductivity of short carbon fiber-carbon nanotube-polymer matrix hybrid composites. Mater. Des. 89, 129–136 (2016)Google Scholar
  45. Pan, Y., Weng, G.J., Meguid, S.A., Bao, W.S., Zhu, Z.H., Hamouda, A.M.S.: Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites. Mech. Mater. 58, 1–11 (2013)Google Scholar
  46. Qu, J., Cherkaoui, M.: Fundamentals of Micromechanics of Solids. Wiley, New Jersey (2006)Google Scholar
  47. Rafiee, R., Ghorbanhosseini, A.: Predicting mechanical properties of fuzzy fiber reinforced composites: radially grown carbon nanotubes on the carbon fiber. Int. J. Mech. Mater. Des. 14, 37–50 (2018)Google Scholar
  48. Ray, M.C., Kundalwal, S.I.: A thermomechanical shear lag analysis of short fuzzy fiber reinforced composite containing wavy carbon nanotubes. Eur. J. Mech. A/Solids 44, 41–60 (2014)MathSciNetzbMATHGoogle Scholar
  49. Seidel, G.D., Lagoudas, D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38(8), 884–907 (2006)Google Scholar
  50. Sham, M.L., Kim, J.K.: Curing behavior and residual stresses in polymeric resins used for encapsulanting electronic packages. J. Appl. Polym. Sci. 96(1), 175–182 (2005)Google Scholar
  51. Sharma, S.P., Lakkad, S.C.: Impact behavior and fractographic study of carbon nanotubes grafted carbon fiber-reinforced epoxy matrix multi-scale hybrid composites. Compos. A Appl. Sci. Manuf. 69, 124–131 (2015)Google Scholar
  52. Shirasu, K., Yamamoto, G., Tamaki, I., Ogasawara, T., Shimamura, Y., Inoue, Y., Hashida, T.: Negative axial thermal expansion coefficient of carbon nanotubes: experimental determination based on measurements of coefficient of thermal expansion for aligned carbon nanotube reinforced epoxy composites. Carbon 95, 904–909 (2015)Google Scholar
  53. Shirasu, K., Nakamura, A., Yamamoto, G., Ogasawara, T., Shimamura, Y., Inoue, Y., Hashida, T.: Potential use of CNTs for production of zero thermal expansion coefficient composite materials: an experimental evaluation of axial thermal expansion coefficient of CNTs using a combination of thermal expansion and uniaxial tensile tests. Compos. A Appl. Sci. Manuf. 95, 152–160 (2017)Google Scholar
  54. Shokrieh, M.M., Daneshvar, A., Akbari, S.: Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes. Mater. Des. 53, 209–216 (2014)Google Scholar
  55. Sideridis, E.: Thermal expansion coefficients of fiber composites defined by the concept of the interphase. Compos. Sci. Technol. 51(3), 301–317 (1994)MathSciNetGoogle Scholar
  56. Tarfaoui, M., Lafdi, K., El Moumen, A.: Mechanical properties of carbon nanotubes based polymer composites. Compos. B Eng. 103, 113–121 (2016)Google Scholar
  57. Tsai, J.L., Tzeng, S.H., Chiu, Y.T.: Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos. B Eng. 41(1), 106–115 (2010)Google Scholar
  58. Xu, Y., Ray, G., Abdel-Magid, B.: Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Compos. A Appl. Sci. Manuf. 37(1), 114–121 (2006)Google Scholar
  59. Yao, S.S., Jin, F.L., Rhee, K.Y., Hui, D., Park, S.J.: Recent advances in carbon-fiber-reinforced thermoplastic composites: a review. Compos. B Eng. 142, 241–250 (2018)Google Scholar
  60. Zare, Y.: Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly-Tyson theory. Mech. Mater. 85, 1–6 (2015)Google Scholar
  61. Zhang, J., Dui, G., Liang, X.: Revisiting the micro-buckling of carbon fibers in elastic memory composite plates under pure bending. Int. J. Mech. Sci. 136, 339–348 (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of GuilanRashtIran

Personalised recommendations