Advertisement

Electromechanical analytical model of shape memory alloy based tunable cantilevered piezoelectric energy harvester

  • M. Senthilkumar
  • M. G. VasundharaEmail author
  • G. K. Kalavathi
Article

Abstract

The resonant frequency of electromechanical energy harvester should be tuned to ambient frequency so as to maximize the harvester power. In this paper, it is proposed to tune the natural frequency of the energy harvester by varying the martensite volume fraction (0–1) of shape memory alloy (SMA). It is found that the shifting of natural frequency is around 8–10% for first three modes of vibration. This paper presents the exact analytical solution for composite cantilevered energy harvester composed of piezoelectric energy harvester layer, substructure layer and SMA layer using the assumption of Euler–Bernoulli beam. The beam base displacement in transverse direction with small angular rotation is due to base excitation. The electromechanical coupled equations of response are derived and then reduced to harmonic behavior. The expressions for frequency response of voltage output, current output and power output are obtained. Finally, a parametric case study of composite cantilevered energy harvester with shape memory alloy and important behavior of the electromechanical coupled system for short circuit and open circuit behaviors are studied in detail.

Keywords

Cantilever beam Energy harvester Piezoelectric Shape memory alloy 

List of symbols

\(A_{k}\)

Modal amplitude

\(\rho_{s}\), \(\rho_{p}\) and \(\rho_{sm}\)

Mass densities

\(\sigma_{1}^{s} , \sigma_{1}^{p} \;{\text{and}}\; \sigma_{1}^{sm}\)

Axial stress components

\(\emptyset_{k}\)

Undamped natural frequency

\(h_{p} , h_{s} \;{\text{and}}\; h_{sm}\)

PZT, substructure and SMA thickness

\(B_{3}\)

Electric field in 3-direction

\(C_{31}\)

Piezoelectric constant

\(E_{M} , E_{A}\)

Martensite and austenite elastic modulus

\(E_{s}\)

Elastic modulus of substructure

\(E_{sm}\)

Young’s modulus of austenite and martensite mixture

\(M_{k} \left( t \right), M_{k}\)

Modal mechanical forcing function and amplitude

\(R_{l}\)

Resistive load

\(S_{{1_{l} }}^{sm}\)

Maximum residual strain

\(S_{11}^{E}\)

Electric compliance at constant electric field

\(S_{1}^{p} ,S_{1}^{s} ,S_{1}^{sm}\)

Axial strain components

\(U_{b} \left( {x,t} \right)\)

Base motion of the beam

\(U_{rel} \left( {x,t} \right)\)

Transverse displacement of the beam relative

\(Z_{0} , \theta_{0}\)

Amplitude translation and angular motion

\(d_{31}\)

Effective piezoelectric stress constant

\(C_{31}\)

Piezoelectric strain constants

\(d_{s} ,d_{a}\)

Strain rate and viscous air damping coefficient

\(d_{s} I\)

Damping due to structural viscoelasticity

\(e_{11}^{E}\)

Modulus of piezoelectric at constant electric field

\(w_{k} \left( x \right),y_{k} \left( t \right)\)

\(k{\text{th}}\) mass normalized Eigen function and modal coordinate

\(\beta_{k}\)

Dimensionless frequency

\(\gamma_{k} , V_{0}\)

Complex terms of steady state response

\(\varepsilon_{33}^{s} ,\varepsilon_{33}^{T}\)

Constant strain and stress permittivity

\(\zeta_{s}\)

Martensite volume fraction

\(\theta_{k}\)

Modal coupling

\(\xi_{k}\)

Damping ratio

\(\sigma_{MS} , \sigma_{Mf}\)

Start and final martensite stress

\(p\)’, ‘\(s\)’, ‘\(sm\)’ and ‘\(k\)

PZT, substructure, SMA and number of modes

\(E\)

Vector of electric displacement

\(I\)

Moment of inertia

\(L\)

Length of the beam

\(N\left( {x,t} \right)\)

Internal bending moment

\(V\left( t \right)\)

Voltage cross the resistive load

\(a\)

Width of beam

\(g\left( t \right),h\left( t \right)\)

Translation and small rotation

\(i\)

Unit outward normal

\(m\)

Mass per unit length

\(t\)

Time constant

\(x[1]\;{\text{and}}\;y[3]\)

Directions

\(\gamma \left( x \right)\)

Smooth test function

\(\delta \left( x \right)\)

Dirac delta function

\(\omega\)

Frequency of the excitation

References

  1. Auricchio, F., Sacco, E.: A superelastic shape-memory-alloy beam model. J. Intell. Mater. Syst. Struct. 8, 489–501 (1997).  https://doi.org/10.1177/1045389X9700800602 CrossRefzbMATHGoogle Scholar
  2. Bhattacharya, S., Singh, I.V., Mishra, B.K., Bui, T.Q.: Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM. Comput. Mech. 52, 799–814 (2013).  https://doi.org/10.1007/s00466-013-0845-8 CrossRefzbMATHGoogle Scholar
  3. American, A., Standard, N.: An American National Standard IEEE Standard on Piezoelectricity (1987)Google Scholar
  4. Bui, T.Q.: Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS. Comput. Methods Appl. Mech. Eng. 295, 470–509 (2015).  https://doi.org/10.1016/J.CMA.2015.07.005 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bui, T.Q., Zhang, C.: Extended finite element simulation of stationary dynamic cracks in piezoelectric solids under impact loading. Comput. Mater. Sci. 62, 243–257 (2012).  https://doi.org/10.1016/J.COMMATSCI.2012.05.049 CrossRefGoogle Scholar
  6. Bui, T.Q., Ngoc Nguyen, M., Zhang, C.: A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis. Comput. Methods Appl. Mech. Eng. 200, 1354–1366 (2011a).  https://doi.org/10.1016/j.cma.2010.12.017 CrossRefzbMATHGoogle Scholar
  7. Bui, T.Q., Nguyen, M.N., Zhang, C.: An efficient meshfree method for vibration analysis of laminated composite plates. Comput. Mech. 48, 175–193 (2011b).  https://doi.org/10.1007/s00466-011-0591-8 CrossRefzbMATHGoogle Scholar
  8. Bui, T.Q., Nguyen, M.N., Zhang, C., Pham, D.A.K.: An efficient meshfree method for analysis of two-dimensional piezoelectric structures. Smart Mater. Struct. 20, 65016 (2011c).  https://doi.org/10.1088/0964-1726/20/6/065016 CrossRefGoogle Scholar
  9. Bui, T.Q., Khosravifard, A., Zhang, C., Hematiyan, M.R., Golub, M.V.: Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method. Eng. Struct. 47, 90–104 (2013).  https://doi.org/10.1016/J.ENGSTRUCT.2012.03.041 CrossRefGoogle Scholar
  10. Bui, T.Q., Vo, D.Q., Zhang, C., Nguyen, D.D.: A consecutive-interpolation quadrilateral element (CQ4): formulation and applications. Finite Elem. Anal. Des. 84, 14–31 (2014).  https://doi.org/10.1016/J.FINEL.2014.02.004 MathSciNetCrossRefGoogle Scholar
  11. Bui, T.Q., Nguyen, D.D., Zhang, X., Hirose, S., Batra, R.C.: Analysis of 2-dimensional transient problems for linear elastic and piezoelectric structures using the consecutive-interpolation quadrilateral element (CQ4). Eur. J. Mech. A Solids 58, 112–130 (2016).  https://doi.org/10.1016/J.EUROMECHSOL.2016.01.010 MathSciNetCrossRefzbMATHGoogle Scholar
  12. Caughey, T.K., O’Kelly, M.E.J.: Classical normal modes in damped linear dynamic systems. J. Appl. Mech. 32, 583 (1965).  https://doi.org/10.1115/1.3627262 MathSciNetCrossRefGoogle Scholar
  13. Challa, V.R., Prasad, M.G., Shi, Y., Fisher, F.T.: A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater. Struct. 17, 15035 (2008).  https://doi.org/10.1088/0964-1726/17/01/015035 CrossRefGoogle Scholar
  14. Eichhorn, C., Tchagsim, R., Wilhelm, N., Woias, P.: A smart and self-sufficient frequency tunable vibration energy harvester. J. Micromech. Microeng. 21, 104003 (2011).  https://doi.org/10.1088/0960-1317/21/10/104003 CrossRefGoogle Scholar
  15. Erturk, A., Inman, D.J.: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Syst. Struct. 19, 1311–1325 (2008).  https://doi.org/10.1177/1045389X07085639 CrossRefGoogle Scholar
  16. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 25009 (2009).  https://doi.org/10.1088/0964-1726/18/2/025009 CrossRefGoogle Scholar
  17. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Chichester (2011)CrossRefGoogle Scholar
  18. Eshghinejad, A., Elahinia, M.: Exact solution for bending of shape memory alloy superelastic beams. In: ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, vol. 2, pp. 345–352. ASME (2011)Google Scholar
  19. Fakhzan, M.N., Muthalif, A.G.A.: Harvesting vibration energy using piezoelectric material: Modeling, simulation and experimental verifications. Mechatronics 23, 61–66 (2013).  https://doi.org/10.1016/J.MECHATRONICS.2012.10.009 CrossRefGoogle Scholar
  20. Hashemi, S.M.T., Khadem, S.E.: Modeling and analysis of the vibration behavior of a shape memory alloy beam. Int. J. Mech. Sci. 48, 44–52 (2006).  https://doi.org/10.1016/J.IJMECSCI.2005.09.011 CrossRefzbMATHGoogle Scholar
  21. John, S., Hariri, M.: Effect of shape memory alloy actuation on the dynamic response of polymeric composite plates. Compos. A Appl. Sci. Manuf. 39, 769–776 (2008).  https://doi.org/10.1016/J.COMPOSITESA.2008.02.005 CrossRefGoogle Scholar
  22. Karadag, C.V., Topaloglu, N.: A self-sufficient and frequency tunable piezoelectric vibration energy harvester. J. Vib. Acoust. 139, 11013 (2016).  https://doi.org/10.1115/1.4034775 CrossRefGoogle Scholar
  23. Lau, K., Zhou, L., Tao, X.: Control of natural frequencies of a clamped–clamped composite beam with embedded shape memory alloy wires. Compos. Struct. 58, 39–47 (2002).  https://doi.org/10.1016/S0263-8223(02)00042-9 CrossRefGoogle Scholar
  24. Leland, E.S., Wright, P.K.: Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater. Struct. 15, 1413–1420 (2006).  https://doi.org/10.1088/0964-1726/15/5/030 CrossRefGoogle Scholar
  25. Liu, P., Yu, T., Bui, T.Q., Zhang, C., Xu, Y., Lim, C.W.: Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method. Int. J. Solids Struct. 51, 2167–2182 (2014).  https://doi.org/10.1016/J.IJSOLSTR.2014.02.024 CrossRefGoogle Scholar
  26. Mansour, M.O., Arafa, M.H., Megahed, S.M.: Resonator with magnetically adjustable natural frequency for vibration energy harvesting. Sens. Actuators A Phys. 163, 297–303 (2010).  https://doi.org/10.1016/J.SNA.2010.07.001 CrossRefGoogle Scholar
  27. Oudich, A., Thiebaud, F.: A two-way shape memory alloy-piezoelectric bimorph for thermal energy harvesting. Mech. Mater. 102, 1–6 (2016).  https://doi.org/10.1016/J.MECHMAT.2016.08.006 CrossRefGoogle Scholar
  28. Rhimi, M., Lajnef, N.: Modeling of a composite piezoelectric/shape memory alloy cantilevered beam for vibration energy harvesting. In: Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Bio-Inspired Materials and Systems; Energy Harvesting, vol. 2, p. 903. ASME (2012)Google Scholar
  29. Rhimi, M., Lajnef, N.: Tunable energy harvesting from ambient vibrations. In: ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, vol. 1, pp. 529–534. ASME (2010)Google Scholar
  30. Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131–1142 (2004).  https://doi.org/10.1088/0964-1726/13/5/018 CrossRefGoogle Scholar
  31. Sharma, K., Bui, T.Q., Zhang, C., Bhargava, R.R.: Analysis of a subinterface crack in piezoelectric bimaterials with the extended finite element method. Eng. Fract. Mech. 104, 114–139 (2013).  https://doi.org/10.1016/J.ENGFRACMECH.2013.03.012 CrossRefGoogle Scholar
  32. Timoshenko, S., Young, D.H.: Elements of Strength of Materials. Van Nostrand Renhold, New York (1968)Google Scholar
  33. Xie, X.D., Wu, N., Yuen, K.V., Wang, Q.: Energy harvesting from high-rise buildings by a piezoelectric coupled cantilever with a proof mass. Int. J. Eng. Sci. 72, 98–106 (2013).  https://doi.org/10.1016/J.IJENGSCI.2013.07.004 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • M. Senthilkumar
    • 1
  • M. G. Vasundhara
    • 1
    Email author
  • G. K. Kalavathi
    • 2
  1. 1.Department of Production EngineeringPSG College of TechnologyPeelamedu, CoimbatoreIndia
  2. 2.Department of MathematicsMalnad College of EngineeringHassanIndia

Personalised recommendations