Advertisement

Effect of uncertainty in material properties on wave propagation characteristics of nanorod embedded in elastic medium

  • Zheng Lv
  • Hu Liu
  • Qi Li
Article

Abstract

The effect of uncertainty in material properties on wave propagation characteristics of nanorod embedded in an elastic medium is investigated by developing a nonlocal nanorod model with uncertainties. Considering limited experimental data, uncertain-but-bounded variables are employed to quantify the uncertain material properties in this paper. According to the nonlocal elasticity theory, the governing equations are derived by applying the Hamilton’s principle. An iterative algorithm based interval analysis method is presented to evaluate the lower and upper bounds of the wave dispersion curves. Simultaneously, the presented method is verified by comparing with Monte-Carlo simulation. Furthermore, combined effects of material uncertainties and various parameters such as nonlocal scale, elastic medium and lateral inertia on wave dispersion characteristics of nanorod are studied in detail. Numerical results not only make further understanding of wave propagation characteristics of nanostructures with uncertain material properties, but also provide significant guidance for the reliability and robust design of the next generation of nanodevices.

Keywords

Wave propagation Nanorod Nonlocal elasticity theory Uncertain material properties Interval analysis method 

Notes

Acknowledgements

This work is financially supported by the National Nature Science Foundation of China under Grant No.11602283. The core idea of the proposed method is originally formulated by Zheng Lv; the data analysis is accomplished by all authors. In addition, the authors also would like to thank the editor and reviewers for their valuable suggestions.

References

  1. Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes. Compos. Struct. 131, 545–555 (2015a)CrossRefGoogle Scholar
  2. Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015b)CrossRefGoogle Scholar
  3. Aranda-Ruiz, J., Loya, J., Fernández-Sáez, J.: Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory. Compos. Struct. 94, 2990–3001 (2012)CrossRefGoogle Scholar
  4. Arda, M., Aydogdu, M.: Torsional statics and dynamics of nanotubes embedded in an elastic medium. Compos. Struct. 114, 80–91 (2014)CrossRefGoogle Scholar
  5. Attia, M.A., Mahmoud, F.F.: Analysis of viscoelastic Bernoulli-Euler nanobeams incorporating nonlocal and microstructure effects. Int. J. Mech. Mater. Des. (2016). doi: 10.1007/s10999-016-9343-4 Google Scholar
  6. Aydogdu, M.: Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mech. Res. Commun. 43, 34–40 (2012a)CrossRefGoogle Scholar
  7. Aydogdu, M.: Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics. Int. J. Eng. Sci. 56, 17–28 (2012b)MathSciNetCrossRefGoogle Scholar
  8. Aydogdu, M.: Longitudinal wave propagation in multiwalled carbon nanotubes. Compos. Struct. 107, 578–584 (2014)CrossRefGoogle Scholar
  9. Aydogdu, M., Arda, M.: Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity. Int. J. Mech. Mater. Des. 12, 71–84 (2016)CrossRefGoogle Scholar
  10. Bahaadini, R., Hosseini, M.: Effects of nonlocal elasticity and slip condition on vibration and stability analysis of viscoelastic cantilever carbon nanotubes conveying fluid. Comp. Mater. Sci. 114, 151–159 (2016)CrossRefGoogle Scholar
  11. Bahrami, A., Teimourian, A.: Study on the effect of small scale on the wave reflection in carbon nanotubes using nonlocal Timoshenko beam theory and wave propagation approach. Compos. Part B Eng. 91, 492–504 (2016)CrossRefGoogle Scholar
  12. Bao, W.X., Zhu, C.C., Cui, W.Z.: Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics. Phys. B 352, 156–163 (2004)CrossRefGoogle Scholar
  13. Barzykin, A.V., Tachiya, M.: Stochastic models of carrier dynamics in single-walled carbon nanotubes. Phys. Rev. B 72, 075425 (2005)CrossRefGoogle Scholar
  14. Ben-Haim, Y., Elishakoff, I.: Convex models of uncertainty in applied mechanics. Elsevier, Amsterdam (1990)zbMATHGoogle Scholar
  15. Brischetto, S.: A continuum elastic three-dimensional model for natural frequencies of single-walled carbon nanotubes. Compos. Part B Eng. 61, 222–228 (2014)CrossRefGoogle Scholar
  16. Chang, T.P.: Stochastic FEM on nonlinear vibration of fluid-loaded double-walled carbon nanotubes subjected to a moving load based on nonlocal elasticity theory. Compos. Part B Eng. 54, 391–399 (2013)CrossRefGoogle Scholar
  17. Chang, T.P.: Nonlinear vibration of single-walled carbon nanotubes with nonlinear damping and random material properties under magnetic field. Compos. Part B Eng. 114, 69–79 (2017)CrossRefGoogle Scholar
  18. Ebrahimi, F., Barati, M.R.: Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory. Compos. Struct. 159, 433–444 (2017)CrossRefGoogle Scholar
  19. Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40, 4109–4128 (2016)MathSciNetCrossRefGoogle Scholar
  20. Enomoto, K., Kitakata, S., Yasuhara, T., Ohtake, N., Kuzumaki, T., Mitsuda, Y.: Measurement of Young’s modulus of carbon nanotubes by nanoprobe manipulation in a transmission electron microscope. Appl. Phys. Lett. 88, 153115 (2006)CrossRefGoogle Scholar
  21. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972a)CrossRefzbMATHGoogle Scholar
  22. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972b)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRefGoogle Scholar
  24. Eringen, A.C.: On Rayleigh surface waves with small wave lengths. Lett. Appl. Eng. Sci. 1, 11–17 (1973)Google Scholar
  25. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Eringen, A.C., Speziale, C.G., Kim, B.S.: Crack-tip problem in non-local elasticity. J. Mech. Phys. Solids 25, 339–355 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Fleck, N.A., Hutchinson, J.W.: Strain Gradient Plasticity. In: John, W.H., Theodore, Y.W. (eds.) Advances in Applied Mechanics, pp. 295–361. Elsevier, Amsterdam (1997)Google Scholar
  28. Gass, M.H., Bangert, U., Bleloch, A.L., Wang, P., Nair, R.R., Geim, A.K.: Free-standing graphene at atomic resolution. Nat. Nanotechnol. 3, 676–681 (2008)CrossRefGoogle Scholar
  29. Ghorbanpour Arani, A., Kolahchi, R., Mortazavi, S.A.: Nonlocal piezoelasticity based wave propagation of bonded double-piezoelectric nanobeam-systems. Int. J. Mech. Mater. Des. 10, 179–191 (2014)CrossRefGoogle Scholar
  30. Ghorbanpour Arani, A., Kolahchi, R., Mosayyebi, M., Jamali, M.: Pulsating fluid induced dynamic instability of visco-double-walled carbon nano-tubes based on sinusoidal strain gradient theory using DQM and Bolotin method. Int. J. Mech. Mater. Des. 12, 17–38 (2016)CrossRefGoogle Scholar
  31. Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q., Yakobson, B.I.: Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J. Mech. Phys. Solids 56, 3475–3485 (2008)CrossRefzbMATHGoogle Scholar
  32. Jiang, C., Lu, G.Y., Han, X., Liu, L.X.: A new reliability analysis method for uncertain structures with random and interval variables. Int. J. Mech. Mater. Des. 8, 169–182 (2012)CrossRefGoogle Scholar
  33. Karličić, D., Kozić, P., Murmu, T., Adhikari, S.: Vibration insight of a nonlocal viscoelastic coupled multi-nanorod system. Eur. J. Mech. A Solid 54, 132–145 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  34. Khorshidi, M.A., Shariati, M., Emam, S.A.: Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory. Int. J. Mech. Sci. 110, 160–169 (2016)CrossRefGoogle Scholar
  35. Kotakoski, J., Krasheninnikov, A.V., Kaiser, U., Meyer, J.C.: From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106, 105505 (2011)CrossRefGoogle Scholar
  36. Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013 (1998)CrossRefGoogle Scholar
  37. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRefGoogle Scholar
  38. Li, X.F., Shen, Z.B., Lee, K.Y.: Axial wave propagation and vibration of nonlocal nanorods with radial deformation and inertia. ZAMM-Z. Angew. Math. Mech. 97, 602–616 (2017)MathSciNetCrossRefGoogle Scholar
  39. Liew, K.M., He, X.Q., Wong, C.H.: On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Mater. 52, 2521–2527 (2004)CrossRefGoogle Scholar
  40. Liu, H., Yang, J.L.: Elastic wave propagation in a single-layered graphene sheet on two-parameter elastic foundation via nonlocal elasticity. Phys. E Low Dimens. Syst. Nanostruct. 44, 1236–1240 (2012)CrossRefGoogle Scholar
  41. Liu, J., Sun, X., Meng, X., Li, K., Zeng, G., Wang, X.: A novel shape function approach of dynamic load identification for the structures with interval uncertainty. Int. J. Mech. Mater. Des. 12, 375–386 (2016)CrossRefGoogle Scholar
  42. Lusk, M.T., Carr, L.D.: Creation of graphene allotropes using patterned defects. Carbon 47, 2226–2232 (2009)CrossRefGoogle Scholar
  43. Lv, Z., Qiu, Z.P.: A direct probabilistic approach to solve state equations for nonlinear systems under random excitation. Acta Mech. Sinica P.R.C 32, 941–958 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  44. Meo, M., Rossi, M.: Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos. Sci. Technol. 66, 1597–1605 (2006)CrossRefGoogle Scholar
  45. Narendar, S.: Terahertz wave propagation in uniform nanorods: a nonlocal continuum mechanics formulation including the effect of lateral inertia. Phys. E Low Dimens. Syst. Nanostruct. 43, 1015–1020 (2011)CrossRefGoogle Scholar
  46. Narendar, S.: Spectral finite element and nonlocal continuum mechanics based formulation for torsional wave propagation in nanorods. Finite Elem. Anal. Des. 62, 65–75 (2012)MathSciNetCrossRefGoogle Scholar
  47. Narendar, S., Gopalakrishnan, S.: Nonlocal scale effects on ultrasonic wave characteristics of nanorods. Phys. E Low Dimens. Syst. Nanostruct. 42, 1601–1604 (2010)CrossRefGoogle Scholar
  48. Narendar, S., Gopalakrishnan, S.: Axial wave propagation in coupled nanorod system with nonlocal small scale effects. Compos. Part B Eng. 42, 2013–2023 (2011)CrossRefGoogle Scholar
  49. Natsuki, T., Ni, Q.-Q., Endo, M.: Analysis of the vibration characteristics of double-walled carbon nanotubes. Carbon 46, 1570–1573 (2008)CrossRefGoogle Scholar
  50. Radebe, I.S., Adali, S.: Buckling and sensitivity analysis of nonlocal orthotropic nanoplates with uncertain material properties. Compos. Part B Eng. 56, 840–846 (2014)CrossRefGoogle Scholar
  51. Radić, N., Jeremić, D., Trifković, S., Milutinović, M.: Buckling analysis of double-orthotropic nanoplates embedded in Pasternak elastic medium using nonlocal elasticity theory. Compos. Part B Eng. 61, 162–171 (2014)CrossRefGoogle Scholar
  52. Rahmati, A.H., Mohammadimehr, M.: Vibration analysis of non-uniform and non-homogeneous boron nitride nanorods embedded in an elastic medium under combined loadings using DQM. Phys. B 440, 88–98 (2014)CrossRefGoogle Scholar
  53. Ruoff, R.S., Qian, D., Liu, W.K.: Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Phys. 4, 993–1008 (2003)CrossRefGoogle Scholar
  54. Salvetat, J.-P., Briggs, G., Bonard, J.-M., Bacsa, R., Kulik, A., Stöckli, T., Burnham, N., Forró, L.: Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999)CrossRefGoogle Scholar
  55. Scarpa, F., Adhikari, S.: Uncertainty modeling of carbon nanotube terahertz oscillators. J. Non-Cryst. 354, 4151–4156 (2008)CrossRefGoogle Scholar
  56. Shaat, M., Abdelkefi, A.: Buckling characteristics of nanocrystalline nano-beams. Int. J. Mech. Mater. Des. (2016). doi: 10.1007/s10999-016-9361-2 Google Scholar
  57. Shatalov, M., Marais, J., Fedotov, I., Tenkam, M.D.: Longitudinal vibration of isotropic solid rods: from classical to modern theories. InTech 2011Google Scholar
  58. Shokrieh, M.M., Rafiee, R.: Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater. Des. 31, 790–795 (2010)CrossRefGoogle Scholar
  59. Thai, H.T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)MathSciNetCrossRefGoogle Scholar
  60. Togun, N., Bağdatli, S.M.: Size dependent nonlinear vibration of the tensioned nanobeam based on the modified couple stress theory. Compos. Part B Eng. 97, 255–262 (2016)CrossRefGoogle Scholar
  61. Wang, L.F., Hu, H.: Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 71, 195412 (2005)CrossRefGoogle Scholar
  62. Wang, Q., Liew, K.M.: Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys. Lett. A 363, 236–242 (2007)CrossRefGoogle Scholar
  63. Wernik, J.M., Meguid, S.A.: Recent developments in multifunctional nanocomposites using carbon nanotubes. Appl. Mech. Rev. 63, 050801 (2010)CrossRefGoogle Scholar
  64. Wu, X.F., Dzenis, Y.A.: Wave propagation in nanofibers. J. Appl. Phys. 100, 124318 (2006)CrossRefGoogle Scholar
  65. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)CrossRefzbMATHGoogle Scholar
  66. Yayli, M.O., Yanik, F., Kandemir, S.Y.: Longitudinal vibration of nanorods embedded in an elastic medium with elastic restraints at both ends. Micro Nano Lett. 10, 641–644 (2015)CrossRefGoogle Scholar
  67. Zhang, X., Jiao, K., Sharma, P., Yakobson, B.I.: An atomistic and non-classical continuum field theoretic perspective of elastic interactions between defects (force dipoles) of various symmetries and application to graphene. J. Mech. Phys. Solids 54, 2304–2329 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institute of Solid MechanicsBeihang University (BUAA)BeijingChina
  2. 2.State Key Laboratory of Robotics, Shenyang Institute of AutomationChinese Academy of SciencesShenyangChina

Personalised recommendations