Partial actions and an embedding theorem for inverse semigroups

  • Mykola Khrypchenko


We give a simple construction involving partial actions which permits us to obtain an easy proof of a weakened version of L. O’Carroll’s theorem on idempotent pure extensions of inverse semigroups.


Inverse semigroup Premorphism Idempotent pure congruence 



The author thanks the referee for the very detailed reading of the manuscript and numerous useful suggestions which permitted to simplify and shorten the proofs. In particular, the use of [6, Proposition 1.2.1] in the proofs of Lemmas 2.1 and 2.2, as well as the use of the order-preserving property of \(\tau _t\) in the proof of Lemma 2.6 are due to the referee. Section 4 also arose from referee’s comments.

This work was partially supported by FAPESP of Brazil (process number: 2012/01554–7).


  1. 1.
    J.C. Birget, J. Rhodes, Group theory via global semigroup theory. J. Algebra 120(2), 284–300 (1989)MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Exel, Partial actions of groups and actions of inverse semigroups. Proc. Am. Math. Soc. 126(12), 3481–3494 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    V. Gould, C. Hollings, Partial actions of inverse and weakly left \(E\)-ample semigroups. J. Aust. Math. Soc. 86, 355–377 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Kellendonk, M.V. Lawson, Partial actions of groups. Int. J. Algebra Comput. 14(1), 87–114 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M.V. Lawson, A class of actions of inverse semigroups. J. Algebra 179(2), 570–598 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M.V. Lawson, Inverse Semigroups. The Theory of Partial Symmetries (World Scientific, Singapore, 1998)CrossRefGoogle Scholar
  7. 7.
    M.V. Lawson, Margolis, S.W, In McAlister’s footsteps: a random ramble around the \(P\) -theorem, in Semigroups and Formal Languages (World Scientific Publishing, Hackensack, 2007), pp. 145–163Google Scholar
  8. 8.
    M.V. Lawson, S.W. Margolis, B. Steinberg, Expansions of inverse semigroups. J. Aust. Math. Soc. 80(2), 205–228 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    D.B. McAlister, Groups, semilattices and inverse semigroups II. Trans. Am. Math. Soc. 196, 351–370 (1974)MathSciNetCrossRefGoogle Scholar
  10. 10.
    L. O’Carroll, Inverse semigroups as extensions of semilattices. Glasg. Math. J. 16(1), 12–21 (1975)MathSciNetCrossRefGoogle Scholar
  11. 11.
    L. O’Carroll, Idempotent determined congruences on inverse semigroups. Semigroup Forum 12(3), 233–243 (1976)MathSciNetCrossRefGoogle Scholar
  12. 12.
    L. O’Carroll, Strongly \(E\)-reflexive inverse semigroups. Proc. Edinb. Math. Soc. 2(20), 339–354 (1977)MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Petrich, Inverse Semigroups. Pure and Applied Mathematics (Wiley, New York, 1984)Google Scholar
  14. 14.
    B. Steinberg, Inverse semigroup homomorphisms via partial group actions. Bull. Aust. Math. Soc. 64(1), 157–168 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M.B. Szendrei, A note on Birget–Rhodes expansion of groups. J. Pure Appl. Algebra 58(1), 93–99 (1989)MathSciNetCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations