Periodica Mathematica Hungarica

, Volume 78, Issue 1, pp 47–57 | Cite as

Partial actions and an embedding theorem for inverse semigroups

  • Mykola KhrypchenkoEmail author


We give a simple construction involving partial actions which permits us to obtain an easy proof of a weakened version of L. O’Carroll’s theorem on idempotent pure extensions of inverse semigroups.


Inverse semigroup Premorphism Idempotent pure congruence 



The author thanks the referee for the very detailed reading of the manuscript and numerous useful suggestions which permitted to simplify and shorten the proofs. In particular, the use of [6, Proposition 1.2.1] in the proofs of Lemmas 2.1 and 2.2, as well as the use of the order-preserving property of \(\tau _t\) in the proof of Lemma 2.6 are due to the referee. Section 4 also arose from referee’s comments.

This work was partially supported by FAPESP of Brazil (process number: 2012/01554–7).


  1. 1.
    J.C. Birget, J. Rhodes, Group theory via global semigroup theory. J. Algebra 120(2), 284–300 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    R. Exel, Partial actions of groups and actions of inverse semigroups. Proc. Am. Math. Soc. 126(12), 3481–3494 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    V. Gould, C. Hollings, Partial actions of inverse and weakly left \(E\)-ample semigroups. J. Aust. Math. Soc. 86, 355–377 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J. Kellendonk, M.V. Lawson, Partial actions of groups. Int. J. Algebra Comput. 14(1), 87–114 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    M.V. Lawson, A class of actions of inverse semigroups. J. Algebra 179(2), 570–598 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    M.V. Lawson, Inverse Semigroups. The Theory of Partial Symmetries (World Scientific, Singapore, 1998)CrossRefzbMATHGoogle Scholar
  7. 7.
    M.V. Lawson, Margolis, S.W, In McAlister’s footsteps: a random ramble around the \(P\) -theorem, in Semigroups and Formal Languages (World Scientific Publishing, Hackensack, 2007), pp. 145–163Google Scholar
  8. 8.
    M.V. Lawson, S.W. Margolis, B. Steinberg, Expansions of inverse semigroups. J. Aust. Math. Soc. 80(2), 205–228 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    D.B. McAlister, Groups, semilattices and inverse semigroups II. Trans. Am. Math. Soc. 196, 351–370 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    L. O’Carroll, Inverse semigroups as extensions of semilattices. Glasg. Math. J. 16(1), 12–21 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    L. O’Carroll, Idempotent determined congruences on inverse semigroups. Semigroup Forum 12(3), 233–243 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    L. O’Carroll, Strongly \(E\)-reflexive inverse semigroups. Proc. Edinb. Math. Soc. 2(20), 339–354 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. Petrich, Inverse Semigroups. Pure and Applied Mathematics (Wiley, New York, 1984)Google Scholar
  14. 14.
    B. Steinberg, Inverse semigroup homomorphisms via partial group actions. Bull. Aust. Math. Soc. 64(1), 157–168 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    M.B. Szendrei, A note on Birget–Rhodes expansion of groups. J. Pure Appl. Algebra 58(1), 93–99 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations