Advertisement

Residues and the Combinatorial Nullstellensatz

  • Roman KarasevEmail author
Article

Abstract

We interpret the Combinatorial Nullstellensatz of Noga Alon as a multidimensional residue formula, describe some consequences of this interpretation and related open problems.

Keywords

Multidimensional residues Combinatorial Nullstellensatz The Cayley–Bacharach theorem 

Mathematics Subject Classification

05E99 14M25 52C35 

Notes

References

  1. 1.
  2. 2.
    N. Alon, Combinatorial Nullstellensatz. Comb. Probab. Comput. 8, 7–29 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    I. Bacharach, Über den Cayley’schen schnittpunktsatz. Mathematische Annalen 26, 275–299 (1886)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    G. Blekherman, Nonnegative polynomials and sums of squares (2010). arXiv:1010.3465
  5. 5.
    A. Cayley, On the Intersection of Curves (Cambridge University Press, Cambridge, 1889)zbMATHGoogle Scholar
  6. 6.
    D. Eisenbud, M. Green, J. Harris, Cayley–Bacharach theorems and conjectures. Bull. Am. Math. Soc. 33, 295–324 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Z. Füredi, M. Ruszinkó, Uniform hypergraphs containing no grids (2011). arXiv:1103.1691
  8. 8.
    V. Gasca, T. Sauer, Polynomial interpolation in several variables. Adv. Comput. Math. 12, 377–410 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    O.F. Gelfond, A.G. Khovanskii, Toric geometry and Grothendieck residues. Mosc. Math. J. 2(1), 99–112 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    B. Green, T. Tao, On sets defining few ordinary lines (2012). arXiv:1208.4714
  11. 11.
    P. Griffiths, J. Harris, Principles of Algebraic Geometry. Cited by Vol. 2 of the Russian Edition (Wiley, New York, Chichester, Brisbane, Toronto, 1978)Google Scholar
  12. 12.
    R. Karasev, F. Petrov, Partitions of nonzero elements of a finite field into pairs. Isr. J. Math. 192, 143–156 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    G. Károlyi, A. Lascoux, S. Ole Warnaar, Constant term identities and Poincaré polynomials (2012). arXiv:1209.0855
  14. 14.
    G. Károlyi, Z.L. Nagy, A simple proof of the Zeilberger–Bressoud \(q\)-Dyson theorem. Proc. Am. Math. Soc. 142, 3007–3011 (2014). arXiv:1211.6484 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    G. Károlyi, Z.L. Nagy, F.V. Petrov, V. Volkov, A new approach to constant term identities and Selberg-type integrals. Adv. Math. 277, 252–282 (2015). arXiv:1312.6369 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Lasoń, A generalization of Combinatorial Nullstellensatz. Electron. J. Comb. 17(32), 1–6 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    J. Lipman, Dualizing Sheaves, Differentials and Residues on Algebraic Varieties, vol. 117, Astérisque (Société mathématique de France, Marseille, 1984)zbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of MathematicsMoscow Institute of Physics and TechnologyDolgoprudnyRussia
  2. 2.Institute for Information Transmission Problems of the Russian Academy of SciencesMoscowRussia

Personalised recommendations