Advertisement

A conceptual framework of the adoption of innovations in organizations: a meta-analytical review of the literature

  • Gianluca VagnaniEmail author
  • Corrado Gatti
  • Luca Proietti
Article
  • 4 Downloads

Abstract

Studies on the adoption of innovations in organizations are abundant and have introduced many different factors that are likely to influence adoption decisions yet, somehow, without an integrated view among them and with somehow contradictory empirical results. This study introduces a conceptual framework in which the attributes of innovation–adoption decision linkages in organizations are mediated by both the behavioral preferences of managers and organizations’ resources and moderated by the innovation life cycle. It further meta-analytically tests the framework’s predictions on 185 primary empirical studies. The findings are expected to contribute to the literature on the adoption of innovations by deepening the theoretical conditions and empirical factors that are likely to influence adoption decisions in organizations. The study also has implications for practice, since it sheds light on the factors that practitioners can leverage to manage the diffusion of innovations.

Keywords

Adoption of innovations in organizations Behavioral preferences of managers Organization’s resources Innovation life cycle Meta-analysis 

Notes

Supplementary material

10997_2019_9452_MOESM1_ESM.docx (39 kb)
Supplementary material 1 (DOCX 40 kb)

References

  1. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckmann (Eds.), Action-control: From cognition to behavior (pp. 11–39). Heidelberg: Springer.CrossRefGoogle Scholar
  2. Ajzen, I. (1987). Attitudes, traits, and actions: Dispositional prediction of behavior in personality and social psychology. In L. Berkowitz (Ed.), Advances in experimental social psychology (pp. 1–63). New York: Academic Press.Google Scholar
  3. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.CrossRefGoogle Scholar
  4. Ajzen, I. (1996). The social psychology of decision making. In E. T. Higgins & A. W. Kruglanski (Eds.), Social psychology: Handbook of basic principles (pp. 297–325). New York, NY: Guilford.Google Scholar
  5. Ajzen, I., & Driver, B. L. (1992). Contingent value measurement: On the nature and meaning of willingess to pay. Journal of Consumer Psychology, 1(4), 297–316.CrossRefGoogle Scholar
  6. Alam, S. S., & Noor, M. K. M. (2009). ICT adoption in small and medium enterprises: An empirical evidence of service sectors in Malaysia. International Journal of Business and Management, 4(2), 112–125.CrossRefGoogle Scholar
  7. Alexandra, V., & Kassim, E. S. (2013). Factors of social networking use as a business tool among micro-enterprises. Paper presented at the 3rd international conference on research and innovation in information systems (ICRIIS), Kuala Lumpur, Malaysia, November 27–28, 2013.Google Scholar
  8. Anderson, N., Potočnik, K., & Zhou, J. (2014). Innovation and creativity in organizations a state-of-the-science review, prospective commentary, and guiding framework. Journal of Management, 40(5), 1297–1333.CrossRefGoogle Scholar
  9. Angle, H. L., & Van de Ven, A. H. (1989). Suggestions for managing the innovation journey. In A. H. Van de Ven, H. L. Angle, & M. S. Poole (Eds.), Research on the management of innovation: The Minnesota studies (pp. 663–698). New York: Oxford University Press.Google Scholar
  10. Arend, R. J. (2014). Social and environmental performance at SMEs: Considering motivations, capabilities, and instrumentalism. Journal of Business Ethics, 125(4), 541–561.CrossRefGoogle Scholar
  11. Arpaci, I. (2013). Organizational adoption of mobile communication technologies. Ankara: Middle East Technical University.Google Scholar
  12. Arts, J. W. C., Frambach, R. T., & Bijmolt, T. H. A. (2011). Generalizations on consumer innovation adoption: A meta-analysis on drivers of intention and behavior. International Journal of Research in Marketing, 28(2), 134–144.CrossRefGoogle Scholar
  13. Attewell, P. (1992). Technology diffusion and organizational learning: The case of business computing. Organization Science, 3(1), 1–19.CrossRefGoogle Scholar
  14. Aubert, B. A., Schroeder, A., & Grimaudo, J. (2012). IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support Systems, 54(1), 510–520.CrossRefGoogle Scholar
  15. Bamberger, P. (2008). From the editors beyond contextualization: Using context theories to narrow the micro-macro gap in management research. Academy of Management Journal, 51(5), 839–846.CrossRefGoogle Scholar
  16. Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215.CrossRefGoogle Scholar
  17. Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120.CrossRefGoogle Scholar
  18. Bass, B. M., & Stogdill, R. M. (1990). Handbook of leadership. New York: The Free Press.Google Scholar
  19. Bauer, T. N., Bodner, T., Erdogan, B., Truxillo, D. M., & Tucker, J. S. (2007). Newcomer adjustment during organizational socialization: A meta-analytic review of antecedents, outcomes, and methods. Journal of Applied Psychology, 92(3), 707.CrossRefGoogle Scholar
  20. Begg, C. B. (1994). Publication bias. In H. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis (pp. 399–409). New York: Russel Sage Foundation.Google Scholar
  21. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246.CrossRefGoogle Scholar
  22. Blalock, H. (1961). Causal inferences in nonexperimental research. Chapel Hill: University of North Carolina Press.Google Scholar
  23. Bobko, P., & Rieck, A. (1980). Large sample estimators for standard errors of functions of correlation coefficients. Applied Psychological Measurement, 4(3), 385–398.CrossRefGoogle Scholar
  24. Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to meta-analysis. West Sussex: Wiley.CrossRefGoogle Scholar
  25. Brown, R. L. (1997). Assessing specific mediational effects in complex theoretical models. Structural Equation Modeling: A Multidisciplinary Journal, 4(2), 142–156.CrossRefGoogle Scholar
  26. Bruque, S., & Moyano, J. (2007). Organisational determinants of information technology adoption and implementation in SMEs: The case of family and cooperative firms. Technovation, 27(5), 241–253.CrossRefGoogle Scholar
  27. Brynjolfsson, E., Hitt, L. M., & Yang, S. (2002). Intangible assets: Computers and organizational capital. Brookings Papers on Economic Activity, 2002(1), 137–181.CrossRefGoogle Scholar
  28. Bullock, R. J., & Svyantek, D. J. (1985). Analyzing meta-analysis: Potential problems, an unsuccessful replication, and evaluation criteria. Journal of Applied Psychology, 70(1), 108–115.CrossRefGoogle Scholar
  29. Caiazza, R. (2016). A cross-national analysis of policies affecting innovation diffusion. Journal of Technology Transfer, 41(6), 1406–1419.CrossRefGoogle Scholar
  30. Camisón-Zornoza, C., Lapiedra-Alcamí, R., Segarra-Ciprés, M., & Boronat-Navarro, M. (2004). A meta-analysis of innovation and organizational size. Organization Studies, 25(3), 331–361.CrossRefGoogle Scholar
  31. Camisón-Zornoza, C., & Villar-López, A. (2014). Organizational innovation as an enabler of technological innovation capabilities and firm performance. Journal of Business Research, 67(1), 2891–2902.CrossRefGoogle Scholar
  32. Carney, M., Gedajlovic, E. R., Heugens, P. P., Van Essen, M., & Van Oosterhout, J. H. (2011). Business group affiliation, performance, context, and strategy: A meta-analysis. Academy of Management Journal, 54(3), 437–460.CrossRefGoogle Scholar
  33. Chen, M.-J. (1996). Competitor analysis and interfirm rivalry: Toward a theoretical integration. Academy of Management Review, 21(1), 100–134.CrossRefGoogle Scholar
  34. Chen, J., Damanpour, F., & Reilly, R. R. (2010). Understanding antecedents of new product development speed: A meta-analysis. Journal of Operations Management, 28(1), 17–33.CrossRefGoogle Scholar
  35. Cheung, M. W. L. (2009). Comparison of methods for constructing confidence intervals of standardized indirect effects. Behavior Research Methods, 41(2), 425–438.CrossRefGoogle Scholar
  36. Cheung, M. W. L., & Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10(1), 40–64.CrossRefGoogle Scholar
  37. Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates Inc.Google Scholar
  38. Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152.CrossRefGoogle Scholar
  39. Colquitt, J. A., LePine, J. A., & Noe, R. A. (2000). Toward an integrative theory of training motivation: A meta-analytic path analysis of 20 years of research. Journal of Applied Psychology, 85(5), 678.CrossRefGoogle Scholar
  40. Cordano, M., & Frieze, I. H. (2000). Pollution reduction preferences of U.S. environmental managers: Applying Ajzen’s theory of planned behavior. Academy of Management Journal, 43(4), 627–641.Google Scholar
  41. Crespo, Á. H., & del Bosque, I. R. (2008). The effect of innovativeness on the adoption of B2C e-commerce: A model based on the theory of planned behaviour. Computers in Human Behavior, 24(6), 2830–2847.CrossRefGoogle Scholar
  42. Crossan, M. M., & Apaydin, M. (2010). A multi-dimensional framework of organizational innovation: A systematic review of the literature. Journal of Management Studies, 47(6), 1154–1191.CrossRefGoogle Scholar
  43. Daft, R. L. (1978). A dual-core model of organizational innovation. Academy of Management Journal, 21(2), 193–210.Google Scholar
  44. Damanpour, F. (1991). Organizational innovation: A meta-analysis of effects of determinants and moderators. Academy of Management Journal, 34(3), 555–590.Google Scholar
  45. Damanpour, F., Walker, R. M., & Avellaneda, C. N. (2009). Combinative effects of innovation types and organizational performance: A longitudinal study of service organizations. Journal of Management Studies, 46(4), 650–675.CrossRefGoogle Scholar
  46. Daryanto, A., Khan, H., Matlay, H., & Chakrabarti, R. (2013). Adoption of country-specific business websites. The case of UK small businesses entering the Chinese market. Journal of Small Business and Enterprise Development, 20(3), 650–660.CrossRefGoogle Scholar
  47. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(4), 319–340.CrossRefGoogle Scholar
  48. Downs, J. G. W., & Mohr, L. B. (1976). Conceptual issues in the study of innovation. Administrative Science Quarterly, 21(4), 700–714.CrossRefGoogle Scholar
  49. Dulany, D. E., Jr. (1961). Hypotheses and habits in verbal “operant conditioning”. Journal of Abnormal and Social Psychology, 63(2), 251–263.CrossRefGoogle Scholar
  50. Dutton, J. E., & Jackson, S. E. (1987). Categorizing strategic issues: Links to organizational action. Academy of Management Review, 12(1), 76–90.CrossRefGoogle Scholar
  51. Ettlie, J. E. (1983). Organizational policy and innovation among suppliers to the food processing sector. Academy of Management Journal, 26(1), 27–44.Google Scholar
  52. Fern, E. F., & Monroe, K. B. (1996). Effect-size estimates: Issues and problems in interpretation. Journal of Consumer Research, 23(2), 89–105.CrossRefGoogle Scholar
  53. Fiedler, K., Schott, M., & Meiser, T. (2011). What mediation analysis can (not) do. Journal of Experimental Social Psychology, 47(6), 1231–1236.CrossRefGoogle Scholar
  54. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.Google Scholar
  55. Fisher, J. D., Fisher, W. A., Bryan, A. D., & Misovich, S. J. (2002). Information-motivation-behavioral skills model-based HIV risk behavior change intervention for inner-city high school youth. Health Psychology, 21(2), 177–186.CrossRefGoogle Scholar
  56. Frambach, R. T., & Schillewaert, N. (2002). Organizational innovation adoption. A multi-level framework of determinants and opportunities for future research. Journal of Business Research, 55(2), 163–176.CrossRefGoogle Scholar
  57. Gajendran, R. S., & Harrison, D. A. (2007). The good, the bad, and the unknown about telecommuting: Meta-analysis of psychological mediators and individual consequences. Journal of Applied Psychology, 92(6), 1524–1541.CrossRefGoogle Scholar
  58. Gallivan, M. J. (2001). Organizational adoption and assimilation of complex technological innovations: Development and application of a new framework. ACM SIGMIS Database, 32(3), 51–85.CrossRefGoogle Scholar
  59. Gamal Aboelmaged, M. (2010). Predicting e-procurement adoption in a developing country: An empirical integration of technology acceptance model and theory of planned behaviour. Industrial Management and Data Systems, 110(3), 392–414.CrossRefGoogle Scholar
  60. Ghobakhloo, M., & Tang, S. H. (2013). The role of owner/manager in adoption of electronic commerce in small businesses: The case of developing countries. Journal of Small Business and Enterprise Development, 20(4), 754–787.CrossRefGoogle Scholar
  61. Gómez, J., & Vargas, P. (2012). Intangible resources and technology adoption in manufacturing firms. Research Policy, 41(9), 1607–1619.CrossRefGoogle Scholar
  62. Gooding, R. Z., & Wagner, J. A. (1985). A meta-analytic review of the relationship between size and performance. Administrative Science Quarterly, 30(3), 462–481.CrossRefGoogle Scholar
  63. Gu, V. C., Cao, Q., & Duan, W. (2012). Unified Modeling Language (UML) IT adoption—A holistic model of organizational capabilities perspective. Decision Support Systems, 54(1), 257–269.CrossRefGoogle Scholar
  64. Gupta, P., Seetharaman, A., & Raj, J. R. (2013). The usage and adoption of cloud computing by small and medium businesses. International Journal of Information Management, 33(5), 861–874.CrossRefGoogle Scholar
  65. Hambrick, D. C., & Mason, P. A. (1984). Upper echelons: The organization as a reflection of its top managers. Academy of Management Review, 9(2), 193–206.CrossRefGoogle Scholar
  66. Hameed, M. A., Counsell, S., & Swift, S. (2012). A meta-analysis of relationships between organizational characteristics and IT innovation adoption in organizations. Information and Management, 49(5), 218–232.CrossRefGoogle Scholar
  67. Harland, P., Staats, H., & Wilke, H. A. (1999). Explaining proenvironmental intention and behavior by personal norms and the theory of planned behavior. Journal of Applied Social Psychology, 29(12), 2505–2528.CrossRefGoogle Scholar
  68. Harrison, D. A., Mykytyn, P. P., Jr., & Riemenschneider, C. K. (1997). Executive decisions about adoption of information technology in small business: Theory and empirical tests. Information Systems Research, 8(2), 171–195.CrossRefGoogle Scholar
  69. Hauser, J., Tellis, G. J., & Griffin, A. (2006). Research on innovation: A review and agenda for marketing science. Marketing Science, 25(6), 687–717.CrossRefGoogle Scholar
  70. He, Q., Duan, Y., Fu, Z., & Li, D. (2006). An innovation adoption study of online e-payment in chinese companies. Journal of Electronic Commerce in Organizations, 4(1), 48–69.CrossRefGoogle Scholar
  71. Henderson, D., Sheetz, S. D., & Trinkle, B. S. (2012). The determinants of inter-organizational and internal in-house adoption of XBRL: A structural equation model. International Journal of Accounting Information Systems, 13(2), 109–140.CrossRefGoogle Scholar
  72. Heyder, M., Theuvsen, L., & Hollmann-Hespos, T. (2012). Investments in tracking and tracing systems in the food industry: A PLS analysis. Food Policy, 37(1), 102–113.CrossRefGoogle Scholar
  73. Higgins, J., & Thompson, S. G. (2004). Controlling the risk of spurious findings from meta-regression. Statistics in Medicine, 23(11), 1663–1682.CrossRefGoogle Scholar
  74. Hossain, M. A., & Quaddus, M. (2015). Radio frequency identification (RFID) adoption: A cross-sectional comparison of voluntary and mandatory contexts. Information Systems Frontiers, 17(5), 1057–1076.CrossRefGoogle Scholar
  75. Hsing Wu, C., Kao, S.-C., & Lin, H.-H. (2013). Acceptance of enterprise blog for service industry. Internet Research, 23(3), 260–297.CrossRefGoogle Scholar
  76. Hsu, P.-F., Ray, S., & Li-Hsieh, Y.-Y. (2014). Examining cloud computing adoption intention, pricing mechanism, and deployment model. International Journal of Information Management, 34(4), 474–488.CrossRefGoogle Scholar
  77. Hung, S.-Y., Hung, W.-H., Tsai, C.-A., & Jiang, S.-C. (2010). Critical factors of hospital adoption on CRM system: Organizational and information system perspectives. Decision Support Systems, 48(4), 592–603.CrossRefGoogle Scholar
  78. Hussin, H., Nor, R. M., & Suhaimi, M. A. (2008). Perceived attributes of e-commerce and the adoption decision: The case of Malaysian SMEs. Jurnal Teknologi Maklumat and Multimedia, 5(1), 107–125.Google Scholar
  79. Jackson, E. L. (2008). Behavioural determinants of the adoption of forward contracts by Western Australian wool producers. Curtin: Curtin University of Technology.Google Scholar
  80. Jarrett, S. M. (2003). Factors affecting the adoption of e-business in the aerospace industry. Nova: Nova Southeastern University.Google Scholar
  81. Jeon, B. N., Han, K. S., & Lee, M. J. (2006). Determining factors for the adoption of e-business: The case of SMEs in Korea. Applied Economics, 38(16), 1905–1916.CrossRefGoogle Scholar
  82. Jeyaraj, A., Rottman, J. W., & Lacity, M. C. (2006). A review of the predictors, linkages, and biases in IT innovation adoption research. Journal of Information Technology, 21(1), 1–23.CrossRefGoogle Scholar
  83. Kaplan, S. (2008). Cognition, capabilities, and incentives: Assessing firm response to the fiber-optic revolution. Academy of Management Journal, 51(4), 672–695.Google Scholar
  84. Kapoor, K. K., Dwivedi, Y. K., & Williams, M. D. (2014a). Innovation adoption attributes: A review and synthesis of research findings. European Journal of Innovation Management, 17(3), 327–348.CrossRefGoogle Scholar
  85. Kapoor, K. K., Dwivedi, Y. K., & Williams, M. D. (2014b). Rogers’ innovation adoption attributes: A systematic review and synthesis of existing research. Information Systems Management, 31(1), 74–91.CrossRefGoogle Scholar
  86. Kaufmann, D., Kraay, A., & Mastruzzi, M. (2010). The worldwide governance indicators: A summary of methodology, data and analytical issues. World Bank policy research working paper (Vol. 5430).Google Scholar
  87. Kennedy, M. T., & Fiss, P. C. (2009). Institutionalization, framing, and diffusion: The logic of TQM adoption and implementation decisions among U.S. hospitals. Academy of Management Journal, 52(5), 897–918.CrossRefGoogle Scholar
  88. Keupp, M. M., Palmié, M., & Gassmann, O. (2012). The strategic management of innovation: A systematic review and paths for future research. International Journal of Management Reviews, 14(4), 367–390.CrossRefGoogle Scholar
  89. Kimberly, J. R., & Evanisko, M. R. (1981). Organizational innovation: The influence of individual, organizational, and contextual factors on hospital adoption of technological and administrative innovations. Academy of Management Journal, 24(4), 689–713.Google Scholar
  90. King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information and Management, 43(6), 740–755.CrossRefGoogle Scholar
  91. Kurnia, S., Choudrie, J., Mahbubur, R. M., & Alzougool, B. (2015). E-commerce technology adoption: A Malaysian grocery SME retail sector study. Journal of Business Research, 68(9), 1906–1918.CrossRefGoogle Scholar
  92. Lau, R. R., Sigelman, L., Heldman, C., & Babbitt, P. (1999). The effects of negative political advertisements: A meta-analytic assessment. American Political Science Review, 93(4), 851–875.CrossRefGoogle Scholar
  93. Lee, Y., & Larsen, K. R. T. (2009). Threat or coping appraisal: Determinants of SMB executives’ decision to adopt anti-malware software. European Journal of Information Systems, 18(2), 177–187.CrossRefGoogle Scholar
  94. Lefebvre, L. A., Lefebvre, E., Elia, E., & Boeck, H. (2005). Exploring B-to-B e-commerce adoption trajectories in manufacturing SMEs. Technovation, 25(12), 1443–1456.CrossRefGoogle Scholar
  95. Lefebvre, L. A., Lefebvre, E., & Harvey, J. (1996). Intangible assets as determinants of advanced manufacturing technology adoption in SME’s: Toward an evolutionary model. IEEE Transactions on Engineering Management, 43(3), 307–322.CrossRefGoogle Scholar
  96. Leung, M. T. (2005). Determinants of the adoption of technological innovations in organizations. Hong Kong: Hong Kong Polythechnic University.Google Scholar
  97. Levin, S. G., Levin, S. L., & Meisel, J. B. (1987). A dynamic analysis of the adoption of a new technology: The case of optical scanners. Review of Economics and Statistics, 69(1), 12–17.CrossRefGoogle Scholar
  98. Li, X., Troutt, M. D., Brandyberry, A., & Wang, T. (2011). Decision factors for the adoption and continued use of online direct sales channels among SMEs. Journal of the Association for Information Systems, 12(1), 1–31.CrossRefGoogle Scholar
  99. Lieberman, M. B., & Montgomery, D. B. (1988). First-mover advantages. Strategic Management Journal, 9(S1), 41–58.CrossRefGoogle Scholar
  100. Lin, C.-Y., & Ho, Y.-H. (2011). Determinants of green practice adoption for logistics companies in China. Journal of Business Ethics, 98(1), 67–83.CrossRefGoogle Scholar
  101. Lin, C.-H., Lin, I.-C., Roan, J.-S., & Yeh, J.-S. (2012). Critical factors influencing hospitals’ adoption of HL7 version 2 standards: An empirical investigation. Journal of Medical Systems, 36(3), 1183–1192.CrossRefGoogle Scholar
  102. Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage.Google Scholar
  103. Livengood, R. S., & Reger, R. K. (2010). That’s our turf! Identity domains and competitive dynamics. Academy of Management Review, 35(1), 48–66.Google Scholar
  104. Marcati, A., Guido, G., & Peluso, A. M. (2008). The role of SME entrepreneurs’ innovativeness and personality in the adoption of innovations. Research Policy, 37(9), 1579–1590.CrossRefGoogle Scholar
  105. March, J. G., & Simon, H. A. (1958). Organizations. New York: Wiley.Google Scholar
  106. Martinez-Garcıa, C. G., Dorward, P., & Rehman, T. (2013). Factors influencing adoption of improved grassland management by small-scale dairy farmers in central Mexico and the implications for future research on small holder adoption in developing countries. Livestock Science, 152(2–3), 228–238.CrossRefGoogle Scholar
  107. Messerschmidt, C. M., & Hinz, O. (2013). Explaining the adoption of grid computing: An integrated institutional theory and organizational capability approach. Journal of Strategic Information Systems, 22(2), 137–156.CrossRefGoogle Scholar
  108. Meyers, L. S., Gamst, G., & Guarino, A. J. (2006). Applied multivariate research: Design and interpretation. Thousand Oaks, CA: Sage.Google Scholar
  109. Miller, C. C., & Cardinal, L. B. (1994). Strategic planning and firm performance: A synthesis of more than two decades of research. Academy of Management Journal, 37(6), 1649–1665.Google Scholar
  110. Miller, D., & Friesen, P. H. (1982). Innovation in conservative and entrepreneurial firms: Two models of strategic momentum. Strategic Management Journal, 3(1), 1–25.CrossRefGoogle Scholar
  111. Mitchell, T. R. (1985). An evaluation of the validity of correlational research conducted in organizations. Academy of Management Review, 10(2), 192–205.CrossRefGoogle Scholar
  112. Montazemi, A. R., & Qahri-Saremi, H. (2015). Factors affecting adoption of online banking: A meta-analytic structural equation modeling study. Information and Management, 52(2), 210–226.CrossRefGoogle Scholar
  113. Nasco, S. A., Toledo, E. G., & Mykytyn, P. P. (2008). Predicting electronic commerce adoption in Chilean SMEs. Journal of Business Research, 61(6), 697–705.CrossRefGoogle Scholar
  114. Nigbur, D., Lyons, E., & Uzzell, D. (2010). Attitudes, norms, identity and environmental behaviour: Using an expanded theory of planned behaviour to predict participation in a kerbside recycling programme. British Journal of Social Psychology, 49(2), 259–284.CrossRefGoogle Scholar
  115. North, D. C. (1990). Institutions, institutional change and economic performance. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  116. Oliver, R. L., & Bearden, W. O. (1985). Crossover effects in the theory of reasoned action: A moderating influence attempt. Journal of Consumer Research, 12(3), 324–340.CrossRefGoogle Scholar
  117. Ozusaglam, S., Robin, S., & Wong, C. Y. (2018). Early and late adopters of ISO 14001-type standards: Revisiting the role of firm characteristics and capabilities. Journal of Technology Transfer, 43(5), 1318–1345.CrossRefGoogle Scholar
  118. Perrow, C. (1994). Accidents in high-risk systems. Technology Studies, 1(1), 1–20.Google Scholar
  119. Pierce, J. L., & Delbecq, A. L. (1977). Organization structure, individual attitudes and innovation. Academy of Management Review, 2(1), 27–37.CrossRefGoogle Scholar
  120. Porter, B. E. (2005). Time and implementing change. British Journal of Educational Technology, 36(6), 1063–1065.CrossRefGoogle Scholar
  121. Powell, W. W., & DiMaggio, P. J. (2012). The new institutionalism in organizational analysis. Chicago: University of Chicago Press.Google Scholar
  122. Premkumar, G. (2003). A meta-analysis of research on information technology implementation in small business. Journal of Organizational Computing and Electronic Commerce, 13(2), 91–121.CrossRefGoogle Scholar
  123. Premkumar, G., & Roberts, M. (1999). Adoption of new information technologies in rural small businesses. Omega, 27(4), 467–484.CrossRefGoogle Scholar
  124. Quaddus, M., & Hofmeyer, G. (2007). An investigation into the factors influencing the adoption of B2B trading exchanges in small businesses. European Journal of Information Systems, 16(3), 202–215.CrossRefGoogle Scholar
  125. Reed, R., & DeFillippi, R. J. (1990). Causal ambiguity, barriers to imitation, and sustainable competitive advantage. Academy of Management Review, 15(1), 88–102.CrossRefGoogle Scholar
  126. Riemenschneider, C. K., Harrison, D. A., & Mykytyn, P. P. (2003). Understanding IT adoption decisions in small business: Integrating current theories. Information and Management, 40(4), 269–285.CrossRefGoogle Scholar
  127. Rivkin, J. W. (2000). Imitation of complex strategies. Management Science, 46(6), 824–844.CrossRefGoogle Scholar
  128. Riyadh, A. N., Rahman, A., & Tanha, M. (2012). Factors affecting internet adoption in the garments industry in Bangladesh: A structural equation modeling (SEM) approach. D.U. Journal of Marketing, 15(1), 1–29.Google Scholar
  129. Rogers, E. M. (1983). Diffusion of innovations. New York: The Free Press.Google Scholar
  130. Rosenbusch, N., Brinckmann, J., & Bausch, A. (2011). Is innovation always beneficial? A meta-analysis of the relationship between innovation and performance in SMEs. Journal of Business Venturing, 26(4), 441–457.CrossRefGoogle Scholar
  131. Rosenbusch, N., Rauch, A., & Bausch, A. (2013). The mediating role of entrepreneurial orientation in the task environment–performance relationship: A meta-analysis. Journal of Management, 39(3), 633–659.CrossRefGoogle Scholar
  132. Rosenthal, R. (1979). The “file drawer problem” and tolerance for null results. Psychological Bulletin, 86(3), 638–641.CrossRefGoogle Scholar
  133. Rosenthal, R. (1991). Meta-analytical procedures for social research. Newbury Park, CA: Sage.CrossRefGoogle Scholar
  134. Rosenthal, R., & Rubin, D. B. (1982). A simple, general purpose display of magnitude of experimental effect. Journal of Educational Psychology, 74(2), 166.CrossRefGoogle Scholar
  135. Ross, L. (1977). The intuitive psychologist and his short-comings. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 10, pp. 173–220). New York: Academic Press.Google Scholar
  136. Ryan, M. J. (1982). Behavioral intention formation: The interdependency of attitudinal and social influence variables. Journal of Consumer Research, 9(3), 263–278.CrossRefGoogle Scholar
  137. Schmidt, F. L., & Hunter, J. E. (2004). Methods of meta-analysis: Correcting error and bias in research findings. Thousand Oaks, CA: Sage.Google Scholar
  138. Schumpeter, J. A. (1934). The theory of economic development: An inquiry into profits, capital, credit, interest, and the business cycle. Cambridge, MA: Harvard University Press.Google Scholar
  139. Schwartz, S. H., & Howard, J. A. (1984). Internalized values as moderators of altruism. In E. Staub, D. Bar-Tal, J. Karylowski, & J. Reykowski (Eds.), Development and maintenance of prosocial behavior (pp. 229–255). New York, NY: Plenum.CrossRefGoogle Scholar
  140. Scott, W. R. (2001). Institutions and organizations. Thousand Oaks, CA: Sage.Google Scholar
  141. Segaar, D., Bolman, C., Willemsen, M. C., & de Vries, H. (2006). Determinants of adoption of cognitive behavioral interventions in a hospital setting: Example of a minimal-contact smoking cessation intervention for cardiology wards. Patient Education and Counseling, 61(2), 262–271.CrossRefGoogle Scholar
  142. Seyal, A. H., & Rahman, M. N. A. (2003). A preliminary investigation of e-commerce adoption in small & medium enterprises in Brunei. Journal of Global Information Technology Management, 6(2), 6–26.CrossRefGoogle Scholar
  143. Shadish, W. R. (1996). Meta-analysis and the exploration of causal mediating processes: A primer of examples, methods, and issues. Psychological Methods, 1(1), 47–65.CrossRefGoogle Scholar
  144. Sheth, J. N. (1973). A model of industrial buyer behavior. Journal of Marketing, 37(4), 50–56.CrossRefGoogle Scholar
  145. Sobel, M. E. (1982). Asymptotic intervals for indirect effects in structural equations models. In S. Leinhart (Ed.), Sociological methodology (pp. 290–312). San Francisco: Jossey-Bass.Google Scholar
  146. Steadman, L., Rutter, D., & Field, S. (2002). Individually elicited versus modal normative beliefs in predicting attendance at breast screening: Examining the role of belief salience in the theory of planned behaviour. British Journal of Health Psychology, 7(3), 317–330.CrossRefGoogle Scholar
  147. Stern, P. C., Dietz, T., Abel, T., Guagnano, G. A., & Kalof, L. (1999). A value-belief-norm theory of support for social movements: The case of environmentalism. Human Ecology Review, 6(2), 81–97.Google Scholar
  148. Subramanian, A., & Nilakanta, S. (1996). Organizational innovativeness: Exploring the relationship between organizational determinants of innovation, types of innovations, and measures of organizational performance. Omega, 24(6), 631–647.CrossRefGoogle Scholar
  149. Swanson, E. B. (1994). Information systems innovation among organizations. Management Science, 40(9), 1069–1092.CrossRefGoogle Scholar
  150. Tabachnick, B. G., & Fidell, L. S. (1996). Using multivariate statistics. New York: Harper & Collins.Google Scholar
  151. Tajfel, H., & Turner, J. C. (2004). The social identity theory of intergroup behavior. In J. T. Jost & J. Sidanius (Eds.), Key readings in social psychology. Political psychology (pp. 276–293). New York, NY: Psychology Press.CrossRefGoogle Scholar
  152. Taylor, S., & Todd, P. (1995). Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. International Journal of Research in Marketing, 12(2), 137–155.CrossRefGoogle Scholar
  153. Teece, D. J. (1986). Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy. Research Policy, 15(6), 285–305.CrossRefGoogle Scholar
  154. Thompson, S. H. T., Sijie, L., & Kee-hung, L. (2009). Adopters and non-adopters of e-procurement in Singapore: An empirical study. Omega, 37(5), 972–987.CrossRefGoogle Scholar
  155. Thong, J. Y. (1999). An integrated model of information systems adoption in small businesses. Journal of Management Information Systems, 15(4), 187–214.CrossRefGoogle Scholar
  156. Thong, J. Y. (2001). Resource constraints and information systems implementation in Singaporean small businesses. Omega, 29(2), 143–156.CrossRefGoogle Scholar
  157. Thong, J. Y., & Yap, C.-S. (1995). CEO characteristics, organizational characteristics and information technology adoption in small businesses. Omega, 23(4), 429–442.CrossRefGoogle Scholar
  158. Tidd, J. (2001). Innovation management in context: Environment, organization and performance. International Journal of Management Reviews, 3(3), 169–183.CrossRefGoogle Scholar
  159. Tolbert, P. S., & Zucker, L. G. (1983). Institutional sources of change in the formal structure of organizations: The diffusion of civil service reform, 1880–1935. Administrative Science Quarterly, 28(1), 22–39.CrossRefGoogle Scholar
  160. Tornatzky, L. G., & Klein, K. J. (1982). Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Transactions on Engineering Management, 29(1), 28–43.CrossRefGoogle Scholar
  161. Triandis, H. C. (1979). Values, attitudes, and interpersonal behavior. Nebraska Symposium on Motivation, 27(1), 195–259.Google Scholar
  162. Tsai, M.-C., Lee, W., & Wu, H.-C. (2010). Determinants of RFID adoption intention: Evidence from Taiwanese retail chains. Information and Management, 47(5–6), 255–261.CrossRefGoogle Scholar
  163. Tung, L. L., & Rieck, O. (2005). Adoption of electronic government services among business organizations in Singapore. Journal of Strategic Information Systems, 14(4), 417–440.CrossRefGoogle Scholar
  164. Uzoka, F.-M. E., & Ndzinge, T. (2009). Empirical analysis of biometric technology adoption and acceptance in Botswana. Journal of Systems and Software, 82(9), 1550–1564.CrossRefGoogle Scholar
  165. Vagnani, G., & Volpe, L. (2017). Innovation attributes and managers’ decisions about the adoption of innovations in organizations: A meta-analytical review. International Journal of Innovation Studies, 1(2), 107–133.CrossRefGoogle Scholar
  166. van Oorschot, J. A. W. H., Hofman, E., & Halman, J. I. M. (2018). A bibliometric review of the innovation adoption literature. Technological Forecasting and Social Change, 134(9), 1–21.CrossRefGoogle Scholar
  167. Viswesvaran, C., & Ones, D. S. (1995). Theory testing: Combining psychometric meta-analysis and strucutural equations modeling. Personnel Psychology, 48(4), 865.CrossRefGoogle Scholar
  168. Waarts, E., Everdingen, Y. M., & Hillegersberg, J. (2002). The dynamics of factors affecting the adoption of innovations. Journal of Product Innovation Management, 19(6), 412–423.CrossRefGoogle Scholar
  169. Wang, M. C., & Bushman, B. J. (1999). Integrating results through meta-analytic review using SAS software. Cary, NC: SAS Institute.Google Scholar
  170. Weigel, F. K., Hazen, B. T., Cegielski, C. G., & Hall, D. J. (2014). Diffusion of innovations and the theory of planned behavior in information systems research: A meta-analysis. Communications of the Association for Information Systems, 34(1), 31–43.Google Scholar
  171. Weng, M.-H., & Lin, C.-Y. (2011). Determinants of green innovation adoption for small and medium-size enterprises (SMES). African Journal of Business Management, 5(22), 9154–9163.Google Scholar
  172. Westphal, J. D., Gulati, R., & Shortell, S. M. (1997). Customization or conformity? An institutional and network perspective on the content and consequences of TQM adoption Administrative Science Quarterly, 42(2), 366–394.Google Scholar
  173. Wolfe, R. A. (1994). Organizational innovation: Review, critique and suggested research. Journal of Management Studies, 31(3), 405–431.CrossRefGoogle Scholar
  174. Wolfswinkel, J. F., Furtmueller, E., & Wilderom, C. P. (2013). Using grounded theory as a method for rigorously reviewing literature. European Journal of Information Systems, 22(1), 45–55.CrossRefGoogle Scholar
  175. Wozniak, G. D. (1987). Human capital, information, and the early adoption of new technology. The Journal of Human Resources, 22(1), 101–112.CrossRefGoogle Scholar
  176. Xu, J., & Quaddus, M. (2012). Examining a model of knowledge management systems adoption and diffusion: A partial least square approach. Knowledge-Based Systems, 27(1), 18–28.CrossRefGoogle Scholar
  177. Zaltman, G., Duncan, R., & Holbek, J. (1973). Innovations and organizations. New York: Wiley.Google Scholar
  178. Zmud, R. W., & Apple, L. E. (1992). Measuring technology incorporation/infusion. Journal of Product Innovation Management, 9(2), 148–155.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gianluca Vagnani
    • 1
    Email author
  • Corrado Gatti
    • 1
  • Luca Proietti
    • 1
  1. 1.Sapienza, University of RomeRomeItaly

Personalised recommendations