Maternal and Child Health Journal

, Volume 21, Issue 4, pp 777–785 | Cite as

Effect of Modifiable Risk Factors on Preterm Birth: A Population Based-Cohort

  • Candice S. Lengyel
  • Shelley Ehrlich
  • Jay D. Iams
  • Louis J. Muglia
  • Emily A. DeFranco


Objectives The purpose of this study is to evaluate the prevalence, impact, and interaction of short interpregnancy interval (IPI), pre-pregnancy body mass index (BMI) category, and pregnancy weight gain (PWG) on the rate of preterm birth. Methods This is a population-based retrospective cohort study using vital statistics birth records from 2006 to 2011 in OH, US, analyzing singleton live births to multiparous mothers with recorded IPI (n = 393,441). Preterm birth rate at <37 weeks gestational age was compared between the referent pregnancy (defined as normal pre-pregnancy maternal BMI, IPI of 12–24 months, and Institute of Medicine (IOM) recommended PWG) and those with short or long IPI, abnormal BMI (underweight, overweight, and obese), and high or low PWG (under or exceeding IOM recommendations). Results Only 6 % of the women in this study had a referent pregnancy, with a preterm birth rate of 7.6 % for this group. Short IPIs of <6 and 6–12 months were associated with increased rates of preterm birth rate to 12.9 and 10.4 %, respectively. Low PWG compared to IOM recommendations for pre-pregnancy BMI class was also associated with increased preterm birth rate of 13.2 % for all BMI classes combined. However, the highest rate of preterm birth of 25.2 % occurred in underweight women with short IPI and inadequate weight gain with adjOR 3.44 (95 % CI 2.80, 4.23). The fraction of preterm births observed in this cohort that can be attributed to short IPIs is 5.9 %, long IPIs is 8.3 %, inadequate PWG is 7.5 %, and low pre-pregnancy BMI is 2.2 %. Conclusions Our analysis indicates that a significant proportion of preterm births in Ohio are associated with potentially modifiable risk factors. These data suggest public health initiatives focused on preterm birth prevention could include counseling and interventions to optimize preconception health and prenatal nutrition.


Interpregnancy interval Body mass index Pregnancy weight gain Preterm birth 



This study includes data provided by the Ohio Department of Health which should not be considered an endorsement of this study or its conclusions.


This work was supported by the Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA, and March of Dimes, Grant 22-FY14-470 for the March of Dimes Prematurity Research Center Ohio, Collaborative, USA.

Compliance with Ethical Standards

Conflict of Interest

The authors report no conflict of interest.


  1. Bhattacharya, S., Campbell, D. M., Liston, W. A., & Bhattacharya, S. (2007). Effect of body mass index on pregnancy outcomes in nulliparous women delivering singleton babies. BMC Public Health, 7, 168. doi: 10.1186/1471-2458-7-168.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Carnero, A. M., Mejia, C. R., & Garcia, P. J. (2012). Rate of gestational weight gain, pre-pregnancy body mass index and preterm birth subtypes: A retrospective cohort study from Peru. BJOG, 119(8), 924–935. doi: 10.1111/j.1471-0528.2012.03345.x.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chmitorz, A., von Kries, R., Rasmussen, K. M., Nehring, I., & Ensenauer, R. (2012). Do trimester-specific cutoffs predict whether women ultimately stay within the Institute of Medicine/National Research Council guidelines for gestational weight gain? Findings of a retrospective cohort study. The American Journal of Clinical Nutrition, 95(6), 1432–1437.CrossRefPubMedGoogle Scholar
  4. Conde-Agudelo, A., Rosas-Bermudez, A., & Kafury-Goeta, A. C. (2006). Birth spacing and risk of adverse perinatal outcomes: A meta-analysis. JAMA, 295(15), 1809–1823. doi: 10.1001/jama.295.15.1809.CrossRefPubMedGoogle Scholar
  5. de Weger, F. J., Hukkelhoven, C. W., Serroyen, J., te Velde, E. R., & Smits, L. J. (2011). Advanced maternal age, short interpregnancy interval, and perinatal outcome. American Journal of Obstetrics and Gynecology, 204(5), e421–e429. doi: 10.1016/j.ajog.2010.12.008.CrossRefGoogle Scholar
  6. Dietz, P. M., Bombard, J. M., Hutchings, Y. L., Gauthier, J. P., Gambatese, M. A., Ko, J. Y., et al. (2014). Validation of obstetric estimate of gestational age on US birth certificates. American Journal of Obstetrics and Gynecology, 210(4), e331–e335. doi: 10.1016/j.ajog.2013.10.875.CrossRefGoogle Scholar
  7. Gemmill, A., & Lindberg, L. D. (2013). Short interpregnancy intervals in the United States. Obstetrics and Gynecology, 122(1), 64–71. doi: 10.1097/AOG.0b013e3182955e58.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hamilton, B. E., Martin, J. A., & Ventura, S. J. (2013). Births: Preliminary data for 2012. National Vital Statistics Reports, 62(3), 1–20. Scholar
  9. Hutcheon, J. A., Bodnar, L. M., Joseph, K. S., Abrams, B., Simhan, H. N., & Platt, R. W. (2012). The bias in current measures of gestational weight gain. Paediatric and Perinatal Epidemiology, 26(2), 109–116. doi: 10.1111/j.1365-3016.2011.01254.x.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hutcheon, J. A., Platt, R. W., Abrams, B., Himes, K. P., Simhan, H. N., & Bodnar, L. M. (2013). A weight-gain-for-gestational-age z score chart for the assessment of maternal weight gain in pregnancy. The American Journal of Clinical Nutrition, 97(5), 1062–1067. doi: 10.3945/ajcn.112.051706.CrossRefPubMedPubMedCentralGoogle Scholar
  11. King, J. C. (2003). The risk of maternal nutritional depletion and poor outcomes increases in early or closely spaced pregnancies. Journal of Nutrition, 133(5 Suppl 2), 1732S–1736S. Scholar
  12. Landon, M. B., Spong, C. Y., Thom, E., Carpenter, M. W., Ramin, S. M., Casey, B., Human Development Maternal-Fetal Medicine Units Network, et al. (2009). A multicenter, randomized trial of treatment for mild gestational diabetes. The New England Journal of Medicine, 361(14), 1339–1348. doi: 10.1056/NEJMoa0902430.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Li, N., Liu, E., Guo, J., Pan, L., Li, B., Wang, P., Hu, G., et al. (2013). Maternal prepregnancy body mass index and gestational weight gain on pregnancy outcomes. PLoS One, 8(12), e82310. doi: 10.1371/journal.pone.0082310.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lynch, A. M., Hart, J. E., Agwu, O. C., Fisher, B. M., West, N. A., & Gibbs, R. S. (2013). Association of extremes of prepregnancy BMI with the clinical presentations of preterm birth. American Journal of Obstetrics and Gynecology. doi: 10.1016/j.ajog.2013.12.011.Google Scholar
  15. Masho, S. W., Bishop, D. L., & Munn, M. (2013). Pre-pregnancy BMI and weight gain: Where is the tipping point for preterm birth? BMC Pregnancy and Childbirth, 13(1), 120. doi: 10.1186/1471-2393-13-120.CrossRefPubMedPubMedCentralGoogle Scholar
  16. McDonald, S. D., Han, Z., Mulla, S., Lutsiv, O., Lee, T., Beyene, J., & Knowledge Synthesis Group. (2011). High gestational weight gain and the risk of preterm birth and low birth weight: A systematic review and meta-analysis. Journal of Obstetrics and Gynecology Canada, 33(12), 1223–1233. Scholar
  17. Reichman, N. E., & Hade, E. M. (2001). Validation of birth certificate data. A study of women in New Jersey’s HealthStart program. Annals of Epidemiology, 11(3), 186–193. Scholar
  18. Reichman, N. E., & Schwartz-Soicher, O. (2007). Accuracy of birth certificate data by risk factors and outcomes: Analysis of data from New Jersey. American Journal of Obstetrics and Gynecology, 197(1), e31–e38. doi: 10.1016/j.ajog.2007.02.026.CrossRefGoogle Scholar
  19. Rasmussen, K. M., Yaktine, A. L., Committee to Reexamine IOM Pregnancy Weight Guidelines, Institute of Medicine, National Research Council (2009). Weight gain during pregnancy: Reexamining the guidelines. Washington, DC: National Academies Press.Google Scholar
  20. Rodrigues, T., & Barros, H. (2008). Short interpregnancy interval and risk of spontaneous preterm delivery. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 136(2), 184–188. doi: 10.1016/j.ejogrb.2007.03.014.CrossRefPubMedGoogle Scholar
  21. Scott-Pillai, R., Spence, D., Cardwell, C. R., Hunter, A., & Holmes, V. A. (2013). The impact of body mass index on maternal and neonatal outcomes: A retrospective study in a UK obstetric population, 2004–2011. BJOG, 120(8), 932–939. doi: 10.1111/1471-0528.12193.CrossRefPubMedGoogle Scholar
  22. Wang, T., Zhang, J., Lu, X., Xi, W., & Li, Z. (2011). Maternal early pregnancy body mass index and risk of preterm birth. Archives of Gynecology and Obstetrics, 284(4), 813–819. doi: 10.1007/s00404-010-1740-6.CrossRefPubMedGoogle Scholar
  23. Winkvist, A., Rasmussen, K. M., Habicht, J.-P. (1992). A new definition of maternal depletion syndrome. American Journal of Public Health, 82(5), 691–694.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Xinxo, S., Bimbashi, A., E, Z. K., & Zaimi, E. (2013). Association between maternal nutritional status of pre pregnancy, gestational weight gain and preterm birth. Materia Socio-Medica, 25(1), 6–8. doi: 10.5455/msm.2013.25.6-8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Center for Prevention of Preterm Birth, Perinatal InstituteCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Division of Biostatistics and EpidemiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, College of MedicineOhio State UniversityColumbusUSA
  4. 4.Division of Maternal-Fetal Medicine, Department of Obstetrics and GynecologyUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations