Advertisement

Maternal and Child Health Journal

, Volume 18, Issue 1, pp 129–137 | Cite as

A Multiple Indicators Multiple Cause (MIMIC) Model of Respiratory Health and Household Factors in Chinese Children: The Seven Northeastern Cities (SNEC) Study

  • Guang-Hui Dong
  • Zhengmin QianEmail author
  • Qiang Fu
  • Jing Wang
  • Edwin Trevathan
  • Wenjun Ma
  • Miao-Miao Liu
  • Da Wang
  • Wan-Hui Ren
  • Kee-Hean Ong
  • Tekeda Freeman Ferguson
  • Erin Riley
  • Maayan Simckes
Article

Abstract

In China, with the rapid economic development and improvement of living standards over the past few decades, the household living environment has shifted dramatically. The aim of the present study is to assess the impact of home environment factors on respiratory symptoms and asthma in Chinese children. Investigators analyzed data collected in the 25 districts from the seven Northeastern cities to examine health effects on respiratory symptoms and asthma in 31,049 children aged 2–14 years. Factor analysis was used to reduce 33 children’s lifestyle and household variables to six new ‘factor’ variables. The multiple indicators multiple causes approach was used to examine the relationship between indoor air pollution and respiratory health status, controlling for covariates. Factor analyses generated six factor variables of potential household risk factors from an original list of 33 variables. The respiratory symptoms and asthma were significantly associated with the recent home renovation factor (estimate = 0.076, p < 0.001), pet ownership factor (estimate = 0.095, p < 0.001), environmental tobacco smoke (ETS) exposure factor (estimate = 0.181, p < 0.001) and PVC-flooring factor (estimate = 0.031, p = 0.007). Home ventilation factor was not related to any respiratory condition (estimate = 0.028, p = 0.074). Independent respiratory health effects existed for multiple household environmental factors recent home renovation, pet ownership, ETS, and PVC-flooring.

Keywords

Factor analysis MIMIC modeling Respiratory condition Indoor air environment 

Notes

Acknowledgments

The authors acknowledge the cooperation of the seven cities, school principals, and the many teachers, students, and parents in Liaoning province. This work was supported by Grants from the China Environmental Protection Foundation (CEPF2008-123-1-5).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Björkstén, B., Clayton, T., Ellwood, P., Stewart, A., Strachan, D., & ISAAC Phase III Study Group. (2008). Worldwide time trends for symptoms of rhinitis and conjunctivitis: Phase III of the International Study of Asthma and Allergies in Childhood. Pediatric Allergy and Immunology, 19, 110–124.CrossRefGoogle Scholar
  2. 2.
    Pearce, N., Aït-Khaled, N., Beasley, R., Mallol, J., Keil, U., Mitchell, E., et al. (2007). Worldwide trends in the prevalence of asthma symptoms: Phase III of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax, 62, 758–766.CrossRefGoogle Scholar
  3. 3.
    Asher, M. I., Stewart, A. W., Mallol, J., Montefort, S., Lai, C. K., Aït-Khaled, N., et al. (2010). Which population level environmental factors are associated with asthma, rhinoconjunctivitis and eczema? Review of the ecological analyses of ISAAC phase one. Respiratory Research, 11, 8.CrossRefGoogle Scholar
  4. 4.
    Crain, E. F., Walter, M., O’Connor, G. T., Mitchell, H., Gruchalla, R. S., Kattan, M., et al. (2002). Home and allergic characteristics of children with asthma in seven US urban communities and design of an environmental intervention: The Inner-City Asthma Study. Environmental Health Perspectives, 110, 939–945.CrossRefGoogle Scholar
  5. 5.
    Hunt, A., Crawford, J. A., Rosenbaum, P. F., & Abraham, J. L. (2011). Levels of household particulate matter and environmental tobacco smoke exposure in the first year of life for a cohort at risk for asthma in urban Syracuse, NY. Environment International, 37, 1196–1205.CrossRefGoogle Scholar
  6. 6.
    Karvonen, A. M., Hyvärinen, A., Roponen, M., Hoffmann, M., Korppi, M., Remes, S., et al. (2009). Confirmed moisture damage at home, respiratory symptoms and atopy in early life: A birth-cohort study. Pediatrics, 124, e329–e338.CrossRefGoogle Scholar
  7. 7.
    McConnell, R., Islam, T., Shankardass, K., Jerrett, M., Lurmann, F., Gilliland, F., et al. (2010). Childhood incident asthma and traffic-related air pollution at home and school. Environmental Health Perspectives, 118, 1021–1026.CrossRefGoogle Scholar
  8. 8.
    Morgan, W. J., Crain, E. F., Gruchalla, R. S., O’Connor, G. T., Kattan, M., Evans, R., I. I. I., et al. (2004). Results of a home-based environmental intervention among urban children with asthma. New England Journal of Medicine, 351, 1068–1080.CrossRefGoogle Scholar
  9. 9.
    Tischer, C. G., Hohmann, C., Thiering, E., Herbarth, O., Müller, A., Henderson, J., et al. (2011). Meta-analysis of mould and dampness exposure on asthma and allergy in eight European birth cohorts: An ENRIECO initiative. Allergy, 66, 1570–1576.CrossRefGoogle Scholar
  10. 10.
    Dong, G. H., Chen, T., Liu, M. M., Wang, D., Ma, Y. N., Ren, W. H., et al. (2011). Gender difference for effects of compound-air pollution on respiratory symptoms in children: Results from 25 districts of Northeast China. PLoS ONE, 6(8), e20827.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang, J. J., Hu, W., Wei, F., Wu, G., Korn, L. R., & Chapman, R. S. (2002). Children’s respiratory morbidity prevalence in relation to air pollution in four Chinese cities. Environmental Health Perspectives, 110, 961–967.CrossRefGoogle Scholar
  12. 12.
    Baker, R. J., Hertz-Picciotto, L., Dostal, M., Keller, J. A., Nozicka, J., Kotesovec, F., et al. (2006). Coal home heating and environmental tobacco smoke in relation to lower respiratory illness in Czech children, from birth to 3 years of age. Environmental Health Perspectives, 114, 1126–1132.CrossRefGoogle Scholar
  13. 13.
    Salo, P. M., Xia, J., Johnson, C. A., Li, Y., Kissling, G. E., Avol, E. L., et al. (2004). Respiratory symptoms in relation to residential coal burning and environmental tobacco smoke among early adolescents in Wuhan, China: A cross-sectional study. Environmental Health, 3, 14.CrossRefGoogle Scholar
  14. 14.
    Cunningham, J., Dockery, D. W., Gold, D. R., & Speizer, F. E. (1995). Racial differences in the association between maternal smoking during pregnancy and lung function in children. American Journal of Respiratory and Critical Care Medicine, 152, 565–569.CrossRefGoogle Scholar
  15. 15.
    Forsberg, B., Pekkanen, J., Clench-Aas, J., Martensson, M. B., Stjernberg, N., Bartonova, A., et al. (1997). Childhood asthma in four regions in Scandinavia: Risk factors and avoidance effects. International Journal of Epidemiology, 26, 610–619.CrossRefGoogle Scholar
  16. 16.
    Gilliland, F. D., Li, Y. F., & Peters, J. M. (2001). Effects of maternal smoking during pregnancy and environmental tobacco smoke on asthma and wheezing in children. American Journal of Respiratory and Critical Care Medicine, 163, 429–436.CrossRefGoogle Scholar
  17. 17.
    Keil, T., Lau, S., Roll, S., Grüber, C., Nickel, R., Niggemann, B., et al. (2009). Maternal smoking increases risk of allergic sensitization and wheezing only in children with allergic predisposition: Longitudinal analysis from birth to 10 years. Allergy, 64, 445–451.CrossRefGoogle Scholar
  18. 18.
    Stein, R. T., Holberg, C. J., Sherrill, D., Wright, A. L., Morgan, W. J., Taussig, L., et al. (1999). Influence of parental smoking on respiratory symptoms during the first decade of life: The Tucson Children’s Respiratory Study. American Journal of Epidemiology, 149, 1030–1037.CrossRefGoogle Scholar
  19. 19.
    Apelberg, B. J., Aoki, Y., & Jaakkola, J. J. (2001). Systematic review: Exposure to pets and risk of asthma and asthma-like symptoms. Journal of Allergy and Clinical Immunology, 107, 455–460.CrossRefGoogle Scholar
  20. 20.
    Bufford, J. D., & Gern, J. E. (2007). Early exposure to pets: Good or bad? Current Allergy and Asthma Reports, 7, 375–382.CrossRefGoogle Scholar
  21. 21.
    Ownby, D. R., Johnson, C. C., & Peterson, E. L. (2002). Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. Journal of the American Medical Association, 288, 963–972.CrossRefGoogle Scholar
  22. 22.
    Burke, H., Leonardi-Bee, J., Hashim, A., Pine-Abata, H., Chen, Y., Cook, D. G., et al. (2012). Prenatal and passive smoke exposure and incidence of asthma and wheeze: Systematic review and meta-analysis. Pediatrics, 129, 735–744.CrossRefGoogle Scholar
  23. 23.
    Diette, G. B., Accinelli, R. A., Balmes, J. R., Buist, A. S., Checkley, W., Garbe, P., et al. (2012). Obstructive lung disease and exposure to burning biomass fuel in the indoor environment. Glob Heart., 7, 265–270.CrossRefGoogle Scholar
  24. 24.
    Svanes, C., Sunyer, J., Plana, E., Dharmage, S., Heinrich, J., Jarvis, D., et al. (2010). Early life origins of chronic obstructive pulmonary disease. Thorax, 65, 14–20.CrossRefGoogle Scholar
  25. 25.
    Dherani, M., Pope, D., Mascarenhas, M., Smith, K. R., Weber, M., & Bruce, N. (2008). Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: A systematic review and meta-analysis. Bulletin of the World Health Organization, 86, 390–398C.CrossRefGoogle Scholar
  26. 26.
    Raw, G. J., Coward, S. K., Brown, V. M., & Crump, D. R. (2004). Exposure to air pollutants in English homes. Journal of Exposure Analysis and Environmental Epidemiology, 1, S85–S94.CrossRefGoogle Scholar
  27. 27.
    Jaakkola, J. J., Parise, H., Kislitsin, V., Lebedeva, N. I., & Spengler, J. D. (2004). Asthma, wheezing, and allergies in Russian schoolchildren in relation to new surface materials in the home. American Journal of Public Health, 94, 560–562.CrossRefGoogle Scholar
  28. 28.
    Jaakkola, J. J., Ieromnimon, A., & Jaakkola, M. S. (2006). Interior surface materials and asthma in adults: A population-based incident case-control study. American Journal of Epidemiology, 164, 742–749.CrossRefGoogle Scholar
  29. 29.
    Jaakkola, J. J., Oie, L., Nafstad, P., Botten, G., Samuelsen, S. O., & Magnus, P. (1999). Interior surface materials in the home and development of bronchial obstruction in young children in Oslo, Norway. American Journal of Public Health, 89, 188–192.CrossRefGoogle Scholar
  30. 30.
    Larsson, M., Hägerhed-Engman, L., Kolarik, B., James, P., Lundin, F., Janson, S., et al. (2010). PVC—As flooring material—And its association with incident asthma in a Swedish child cohort study. Indoor Air, 20, 494–501.CrossRefGoogle Scholar
  31. 31.
    Aiken Morgan, A. T., Marsiske, M., Dzierzewski, J. M., Jones, R. N., Whitfield, K. E., Johnson, K. E., et al. (2010). Race-related cognitive test bias in the active study: A mimic model approach. Experimental Aging Research, 36, 426–452.CrossRefGoogle Scholar
  32. 32.
    Mast, B. T. (2004). Cerebrovascular disease and late-life depression: A latent-variable analysis of depressive symptoms after stroke. American Journal of Geriatric Psychiatry, 12, 315–322.CrossRefGoogle Scholar
  33. 33.
    Ríos-Bedoya, C. F., Pomerleau, C. S., Neuman, R. J., & Pomerleau, O. F. (2009). Using MIMIC models to examine the relationship between current smoking and early smoking experiences. Nicotine & Tobacco Research, 11, 1035–1041.CrossRefGoogle Scholar
  34. 34.
    State Environmental Protection Administration of China (SEPA). (1992). Standardized environmental monitoring and analysis methods. Beijing, China: SEPA.Google Scholar
  35. 35.
    Peters, J. M., Avol, E., Navidi, W., London, S. J., Gauderman, W. J., Lurmann, F., et al. (1999). A study of twelve Southern California communities with differing levels and types of air pollution. I. Prevalence of respiratory morbidity. American Journal of Respiratory and Critical Care Medicine, 159, 760–767.CrossRefGoogle Scholar
  36. 36.
    Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245–276.CrossRefGoogle Scholar
  37. 37.
    Muthén, B., du Toit S. H. C., & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Working Paper. http://WWW.gseis.ucla.edu/faculty/muthen/full_paper_list.htm.
  38. 38.
    Brown, T. (2006). Confirmatory factor analysis for applied research. New York: Guildford.Google Scholar
  39. 39.
    Kachigan, S. K. (1991). Multivariate statistical analysis: A conceptual introduction. New York, NY: Radius Press.Google Scholar
  40. 40.
    Loehlin, J. C. (1987). Latent variable models, an introduction to factor, path, and structural analysis. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  41. 41.
    Muthén, L. K., & Muthén, B. O. (2009). Mplus user’s guide. Statistical analysis with latent variables (4th ed.). Los Angeles, CA: Muthen & Muthen.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Guang-Hui Dong
    • 1
    • 2
  • Zhengmin Qian
    • 3
    Email author
  • Qiang Fu
    • 4
  • Jing Wang
    • 4
  • Edwin Trevathan
    • 3
  • Wenjun Ma
    • 5
  • Miao-Miao Liu
    • 1
    • 2
  • Da Wang
    • 1
    • 2
  • Wan-Hui Ren
    • 6
  • Kee-Hean Ong
    • 7
  • Tekeda Freeman Ferguson
    • 8
  • Erin Riley
    • 3
  • Maayan Simckes
    • 3
  1. 1.Department of Biostatistics and Epidemiology, School of Public HealthChina Medical UniversityShenyangPeople’s Republic of China
  2. 2.Department of Occupational and Environmental Health, School of Public HealthChina Medical UniversityShenyangPeople’s Republic of China
  3. 3.Department of Epidemiology, School of Public HealthSaint Louis UniversitySaint LouisUSA
  4. 4.Department of Biostatistics, School of Public HealthSaint Louis UniversitySaint LouisUSA
  5. 5.Guangdong Provincial Institute of Public HealthGuangdong Provincial Center for Disease Control and PreventionGuangzhouPeople’s Republic of China
  6. 6.Department of Ambient Air Pollution MonitorShenyang Environmental Monitoring CenterShenyangPeople’s Republic of China
  7. 7.Department of Environmental and Occupational Health, School of Public HealthSaint Louis UniversitySaint LouisUSA
  8. 8.Department of Epidemiology, School of Public HealthLouisiana State UniversityNew OrleansUSA

Personalised recommendations