Maternal and Child Health Journal

, Volume 18, Issue 1, pp 316–325 | Cite as

Development of a Linked Perinatal Data Resource From State Administrative and Community-Based Program Data

  • Eric S. HallEmail author
  • Neera K. Goyal
  • Robert T. Ammerman
  • Megan M. Miller
  • David E. Jones
  • Jodie A. Short
  • Judith B. Van Ginkel
Methodological Notes


To demonstrate a generalizable approach for developing maternal-child health data resources using state administrative records and community-based program data. We used a probabilistic and deterministic linking strategy to join vital records, hospital discharge records, and home visiting data for a population-based cohort of at-risk, first time mothers enrolled in a regional home visiting program in Southwestern Ohio and Northern Kentucky from 2007 to 2010. Because data sources shared no universal identifier, common identifying elements were selected and evaluated for discriminating power. Vital records then served as a hub to which other records were linked. Variables were recoded into clinically significant categories and a cross-set of composite analytic variables was constructed. Finally, individual-level data were linked to corresponding area-level measures by census tract using the American Communities Survey. The final data set represented 2,330 maternal-infant pairs with both home visiting and vital records data. Of these, 56 pairs (2.4 %) did not link to either maternal or infant hospital discharge records. In a 10 % validation subset (n = 233), 100 % of the reviewed matches between home visiting data and vital records were true matches. Combining multiple data sources provided more comprehensive details of perinatal health service utilization and demographic, clinical, psychosocial, and behavioral characteristics than available from a single data source. Our approach offers a template for leveraging disparate sources of data to support a platform of research that evaluates the timeliness and reach of home visiting as well as its association with key maternal-child health outcomes.


Home visiting Early childhood development Data linking 



Dr. Goyal was supported by the BIRCWH K12 program, co-funded by the Office of Research on Women’s Health and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Award Number 5K12HD051953-07. Dr. Ammerman was supported by Grant R01MH087499 from the National Institute of Mental Health. The content is solely the responsibility of the authors and does not represent the official views of the NICHD, the NIMH, or the NIH. The authors acknowledge support of the United Way of Greater Cincinnati, Kentucky H.A.N.D.S., and Ohio Help Me Grow, and technical assistance from Ted Folger.


  1. 1.
    Barfield, W. D., Clements, K. M., Lee, K. G., et al. (2008). Using linked data to assess patterns of early intervention (EI) referral among very low birth weight infants. Maternal and Child Health Journal, 12(1), 24–33. doi: 10.1007/s10995-007-0227-y.CrossRefGoogle Scholar
  2. 2.
    Clements, K. M., Barfield, W. D., Kotelchuck, M., et al. (2006). Birth characteristics associated with early intervention referral, evaluation for eligibility, and program eligibility in the first year of life. Maternal and Child Health Journal, 10(5), 433–441. doi: 10.1007/s10995-006-0080-4.CrossRefGoogle Scholar
  3. 3.
    Herrchen, B., Gould, J. B., & Nesbitt, T. S. (1997). Vital statistics linked birth/infant death and hospital discharge record linkage for epidemiological studies. Computers and Biomedical Research, 30(4), 290–305.CrossRefGoogle Scholar
  4. 4.
    Srinivas, S. K., Fager, C., & Lorch, S. A. (2010). Evaluating risk-adjusted cesarean delivery rate as a measure of obstetric quality. Obstetrics and Gynecology, 115(5), 1007–1013. doi: 10.1097/AOG.0b013e3181d9f4b6.CrossRefGoogle Scholar
  5. 5.
    Health Resources and Services Administration. (2012). Maternal, infant, and early childhood home visiting program. Accessed November 1, 2012
  6. 6.
    Ammerman, R. T., Putnam, F. W., Kopke, J. E., et al. (2007). Development and implementation of a quality assurance infrastructure in a multisite home visitation program in Ohio and Kentucky. J Prev Interv Community., 34(1–2), 89–107. doi: 10.1300/J005v34n01_05.CrossRefGoogle Scholar
  7. 7.
    Bradley, R. H., & Caldwell, B. M. (1977). Home observation for measurement of the environment: A validation study of screening efficiency. American Journal of Mental Deficiency, 81(5), 417–420.PubMedGoogle Scholar
  8. 8.
    Kempe, R. S., & Kempe, C. H. (1978). Child abuse. Cambridge, Mass: Harvard University Press.Google Scholar
  9. 9.
    Squires, J., Bricker, D. D., & Twombly, E. (2009). Ages and stages questionnaires: A parent-completed child monitoring system (3rd ed.). Baltimore: Paul H. Brooks Pub. Co.Google Scholar
  10. 10.
    Black, C., & Roos, L. L. (2005). Linking and combining data to develop statistics for understanding the population’s health. In D. J. Friedman, E. L. Hunter, & R. G. Parrish (Eds.), Health statistics: Shaping policy and practice to improve the population’s health (pp. 214–240). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  11. 11.
    Roos, L. L., & Wajda, A. (1991). Record linkage strategies. Part I: Estimating information and evaluating approaches. Methods of Information in Medicine, 30(2), 117–123.CrossRefGoogle Scholar
  12. 12.
    Roos, L. L., Jr, Wajda, A., & Nicol, J. P. (1986). The art and science of record linkage: Methods that work with few identifiers. Computers in Biology and Medicine, 16(1), 45–57.CrossRefGoogle Scholar
  13. 13.
    Manitoba Centre for Health Policy. (2012). Concept: LINKS: A record linkage package. Accessed October 2, 2012
  14. 14.
    Goyal, N. K., Fager, C., & Lorch, S. A. (2011). Adherence to discharge guidelines for late-preterm newborns. Pediatrics, 128(1), 62–71. doi: 10.1542/peds.2011-0258.CrossRefGoogle Scholar
  15. 15.
    Lorch, S. A., Baiocchi, M., Ahlberg, C. E., et al. (2012). The differential impact of delivery hospital on the outcomes of premature infants. Pediatrics, 130(2), 270–278. doi: 10.1542/peds.2011-2820.CrossRefGoogle Scholar
  16. 16.
    U.S. Census Bureau. (2012). American community survey. Accessed November 12, 2012
  17. 17.
    Krieger, N., Chen, J. T., Waterman, P. D., et al. (2003). Choosing area based socioeconomic measures to monitor social inequalities in low birth weight and childhood lead poisoning: The public health disparities geocoding project (US). Journal of Epidemiology and Community Health, 57(3), 186–199.CrossRefGoogle Scholar
  18. 18.
    American Academy of Pediatrics, Council on Child and Adolescent Health. (1998). The role of home-visitation programs in improving health outcomes for children and families. Pediatrics, 101(3 Pt 1):486–489.CrossRefGoogle Scholar
  19. 19.
    Kitzman, H., Olds, D. L., Henderson, C. R., Jr., et al. (1997). Effect of prenatal and infancy home visitation by nurses on pregnancy outcomes, childhood injuries, and repeated childbearing. A randomized controlled trial. JAMA, the Journal of the American Medical Association, 278(8), 644–652.CrossRefGoogle Scholar
  20. 20.
    Sweet, M. A., & Appelbaum, M. I. (2004). Is home visiting an effective strategy? A meta-analytic review of home visiting programs for families with young children. Child Development, 75(5), 1435–1456. doi: 10.1111/j.1467-8624.2004.00750.x.CrossRefGoogle Scholar
  21. 21.
    Muglia, L. J., & Katz, M. (2010). The enigma of spontaneous preterm birth. The New England Journal of Medicine, 362(6), 529–535. doi: 10.1056/NEJMra0904308.CrossRefGoogle Scholar
  22. 22.
    Kramer, M. R., & Hogue, C. R. (2008). Place matters: Variation in the black/white very preterm birth rate across U.S. metropolitan areas, 2002–2004. Public Health Reports, 123(5), 576–585.CrossRefGoogle Scholar
  23. 23.
    Behrman RE, Butler AS, Institute of Medicine (U.S.). (2007). Committee on understanding premature birth and assuring healthy outcomes. Preterm birth: Causes, consequences, and prevention. Washington, D.C.: National Academies Press.Google Scholar
  24. 24.
    Herman A, McCarthy B, Bakewell J, et al. (1997). Data linkage methods used in maternally-linked birth and infant death surveillance data sets from the United States (Georgia, Missouri, Utah and Washington State), Israel, Norway, Scotland and Western Australia. Paediatric and Perinatal Epidemiology, 11(S1):5–22. doi: 10.1046/j.1365-3016.11.s1.11.x.
  25. 25.
    Declercq, E., Barger, M., Cabral, H. J., et al. (2007). Maternal outcomes associated with planned primary cesarean births compared with planned vaginal births. Obstetrics and Gynecology, 109(3), 669–677. doi: 10.1097/01.AOG.0000255668.20639.40.CrossRefGoogle Scholar
  26. 26.
    Manning, S. E., Davin, C. A., Barfield, W. D., et al. (2011). Early diagnoses of autism spectrum disorders in Massachusetts birth cohorts, 2001–2005. Pediatrics, 127(6), 1043–1051. doi: 10.1542/peds.2010-2943.CrossRefGoogle Scholar
  27. 27.
    Shapiro-Mendoza, C. K., Tomashek, K. M., Kotelchuck, M., et al. (2006). Risk factors for neonatal morbidity and mortality among “healthy”, late preterm newborns. Seminars in Perinatology, 30(2), 54–60.CrossRefGoogle Scholar
  28. 28.
    DeFranco, E. A., Lian, M., Muglia, L. A., et al. (2008). Area-level poverty and preterm birth risk: A population-based multilevel analysis. BMC Public Health, 8, 316. doi: 10.1186/1471-2458-8-316.CrossRefGoogle Scholar
  29. 29.
    McGuigan, W. M., Katzev, A. R., & Pratt, C. C. (2003). Multi-level determinants of retention in a home-visiting child abuse prevention program. Child Abuse and Neglect, 27(4), 363–380.CrossRefGoogle Scholar
  30. 30.
    Cheung, N. T., Fung, V., Chow, Y. Y., et al. (2001). Structured data entry of clinical information for documentation and data collection. Studies in Health Technology and Information, 84(Pt 1), 609–613.Google Scholar
  31. 31.
    Romano, P. S., & Mark, D. H. (1994). Bias in the coding of hospital discharge data and its implications for quality assessment. Medical Care, 32(1), 81–90.CrossRefGoogle Scholar
  32. 32.
    Iezzoni, L. I., Foley, S. M., Daley, J., et al. (1992). Comorbidities, complications, and coding bias. Does the number of diagnosis codes matter in predicting in-hospital mortality? JAMA, the Journal of the American Medical Association, 267(16), 2197–2203.CrossRefGoogle Scholar
  33. 33.
    Hsia, D. C., Krushat, W. M., Fagan, A. B., et al. (1988). Accuracy of diagnostic coding for medicare patients under the prospective-payment system. The New England Journal of Medicine, 318(6), 352–355. doi: 10.1056/NEJM198802113180604.CrossRefGoogle Scholar
  34. 34.
    Simborg, D. W. (1981). DRG creep: A new hospital-acquired disease. The New England Journal Of Medicine, 304(26), 1602–1604. doi: 10.1056/NEJM198106253042611.CrossRefGoogle Scholar
  35. 35.
    Reichman, N. E., & Hade, E. M. (2001). Validation of birth certificate data. A study of women in New Jersey’s HealthStart program. Annals of Epidemiology, 11(3), 186–193.CrossRefGoogle Scholar
  36. 36.
    Reichman NE, Schwartz-Soicher O. (2007). Accuracy of birth certificate data by risk factors and outcomes: analysis of data from New Jersey. American Journal of Obstetrics and Gynecology, 197(1):32 e1–8. doi: 10.1016/j.ajog.2007.02.026.CrossRefGoogle Scholar
  37. 37.
    DiGiuseppe, D. L., Aron, D. C., Ranbom, L., et al. (2002). Reliability of birth certificate data: A multi-hospital comparison to medical records information. Maternal and Child Health Journal, 6(3), 169–179.CrossRefGoogle Scholar
  38. 38.
    Vinikoor, L. C., Messer, L. C., Laraia, B. A., et al. (2010). Reliability of variables on the North Carolina birth certificate: A comparison with directly queried values from a cohort study. Paediatric and Perinatal Epidemiology, 24(1), 102–112. doi: 10.1111/j.1365-3016.2009.01087.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Eric S. Hall
    • 1
    Email author
  • Neera K. Goyal
    • 2
  • Robert T. Ammerman
    • 3
  • Megan M. Miller
    • 2
  • David E. Jones
    • 4
  • Jodie A. Short
    • 3
  • Judith B. Van Ginkel
    • 3
  1. 1.Perinatal Institute and Biomedical InformaticsCincinnati Children’s HospitalCincinnatiUSA
  2. 2.Perinatal InstituteCincinnati Children’s HospitalCincinnatiUSA
  3. 3.Every Child SucceedsCincinnati Children’s HospitalCincinnatiUSA
  4. 4.Biostatistics and EpidemiologyCincinnati Children’s HospitalCincinnatiUSA

Personalised recommendations