Advertisement

A Calculus of Regions Respecting Both Measure and Topology

  • Tamar LandoEmail author
  • Dana Scott
Article
  • 10 Downloads

Abstract

Say that space is ‘gunky’ if every part of space has a proper part. Traditional theories of gunk, dating back to the work of Whitehead in the early part of last century, modeled space in the Boolean algebra of regular closed (or regular open) subsets of Euclidean space. More recently a complaint was brought against that tradition in Arntzenius (2008) and Russell (2008): Lebesgue measure is not even finitely additive over the algebra, and there is no countably additive measure on the algebra. Arntzenius advocated modeling gunk in measure algebras instead—in particular, in the algebra of Borel subsets of Euclidean space, modulo sets of Lebesgue measure zero. But while this algebra carries a natural, countably additive measure, it has some unattractive topological features. In this paper, we show how to construct a model of gunk that has both nice rudimentary measure-theoretic and topological properties. We then show that in modeling gunk in this way we can distinguish between finite dimensions, and that nothing in lost in terms of our ability to identify points as locations in space.

Keywords

Regions Gunk Topology Point-free space Mereology Mereotopology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Achille Varzi and two anonymous referees for very helpful comments.

References

  1. 1.
    Arntzenius, F. (2008). Gunk, topology, and measure. In D. Zimmerman (Ed.) , Oxford studies in metaphysics (Vol. 4, 225–247). Oxford: Oxford University Press.Google Scholar
  2. 2.
    Arntzenius, F., & Hawthorne, J. (2005). Gunk and continuous variation. The Monist, 88(4), 441–465.CrossRefGoogle Scholar
  3. 3.
    Balbiani, P., Tinchev, T., Vakarelov, D. (2007). Modal logics for region-based theories of space. Fundamenta Informaticae, 81, 29–82.Google Scholar
  4. 4.
    Bennett, B. (1996). Modal logics for qualitative spatial reasoning. Journal of the IGPL, 4(1), 23–45.CrossRefGoogle Scholar
  5. 5.
    Birkhoff, G. (1936). Order and the inclusion relation. In Comptes rendus du Congrès international des mathématiciens. Oslo.Google Scholar
  6. 6.
    Bricker, P. (2016). Composition as a kind of identity. Inquiry, 59(3), 264–294.CrossRefGoogle Scholar
  7. 7.
    Clarke, B. (1981). A calculus of individuals based on ‘connection’. Notre Dame Journal of Formal Logic, 22, 204–218.CrossRefGoogle Scholar
  8. 8.
    Cohn, A G, & Varzi, A. (2003). Mereotopological connection. Journal of Philosophical Logic, 32(4), 357–390.CrossRefGoogle Scholar
  9. 9.
    de Laguna, T. (1922). Point, line and surface as sets of solids. Journal of Philosophy, 17, 449–461.CrossRefGoogle Scholar
  10. 10.
    De Vries, H. (1962). Compact spaces and compactifications: an algebraic approach. Assen: Van Gorcum.Google Scholar
  11. 11.
    Dimov, G, & Vakarelov, D. (2006a). Contact algebras and region-based theory of space: Proximity approach i. Fundamenta Informaticae, 74(2,3), 209–249.Google Scholar
  12. 12.
    Dimov, G, & Vakarelov, D. (2006b). Contact algebras and region-based theory of space: Proximity approach ii. Fundamenta Informaticae, 74(2,3), 251–282.Google Scholar
  13. 13.
    Dimov, G, & Vakarelov, D. (2006c). Topological representation of precontact algebras. In W. MacCaull, M. Winter, I. Duntsch (Eds.) Relational methods in computer science. RelMiCS 2005, Lecture Notes in Computer Science, vol 3929. Berlin: Springer.Google Scholar
  14. 14.
    Gerla, G. (1995). Pointless Geometries. In Buekenhout, F. (Ed.) Handbook of incidence geometry: buildings and foundations, chapter 18: Elsevier.Google Scholar
  15. 15.
    Givant, S, & Halmos, P. (2009). Introduction to Boolean algebras. New York: Springer.Google Scholar
  16. 16.
    Grzegorczyk, A. (1960). Axiomatizability of geometry without points. Synthese, 12, 228–235.CrossRefGoogle Scholar
  17. 17.
    Gruszczyński, R. (2016). Non-standard theories of space. Nicolaus Copernicus University Scientific Publishing House.Google Scholar
  18. 18.
    Cohn, A.G., & Hazarika, S.M. (2001). Qualitative spatial representation and reasoning: an overview. Fundamenta Informaticae, 46(1–2), 1–29.Google Scholar
  19. 19.
    Lewis, D. (1986). On the plurality of worlds. Oxford: Blackwell.Google Scholar
  20. 20.
    Lewis, D. (1991). Parts of classes. Oxford: B. Blackwell.Google Scholar
  21. 21.
    Randell, D A, Cui, Z, Cohn, AG. (1992). A spatial logic based on regions and connection. In Proceedings of the third international conference on principles of knowledge representation and reasoning (pp. 165–176).Google Scholar
  22. 22.
    Roeper, P. (1997). Region-based topology. Journal of Philosophical Logic, 26 (3), 251–309.CrossRefGoogle Scholar
  23. 23.
    Russell, J. (2008). The structure of gunk: adventures in the ontology of space. In Oxford studies in metaphysics (Vol. 4 pp. 248–274). Oxford: Oxford University Press.Google Scholar
  24. 24.
    Scott, D. (2009). Mixing modality and probability, lecture notes. UC Berkeley, Logic Colloquium.Google Scholar
  25. 25.
    Shapiro, S, & Hellman, G. (2018). Varieties of continua: from regions to points and back. Oxford: Oxford University Press.Google Scholar
  26. 26.
    Stell, J. (2000). Boolean connection algebras: anew approach to the Region-Connection Calculus. Artificial Intelligence, 122(1–2), 111–136.CrossRefGoogle Scholar
  27. 27.
    Skyrms, B. (1993). Logical atoms and combinatorial possibility. The Journal of Philosophy, 90(5), 219–232.CrossRefGoogle Scholar
  28. 28.
    Tarski, A. (1956). Foundations of the geometry of solids. In Woodger, J.H. (Ed.) Logic, semantics, and metamathematics (pp. 24–29). Oxford: Clarendon Press.Google Scholar
  29. 29.
    Vakarelov, D. (2007). Region-based theory of space: algebras of regions, representation theory, and logics. In D. Gabbay, M. Zakharyaschev, S. Goncharov (Eds.) , Mathematical problems from applied logic (Vol. II, pp. 267–348). New York: Springer.Google Scholar
  30. 30.
    Vakarelov, D, Düntsch, I, Bennett, B. (2001). A note on proximity spaces and connection based mereology. In C. Welty, & B. Smith (Eds.) , Proceedings of the international conference on formal ontology in information systems (pp. 139–150).Google Scholar
  31. 31.
    Vakarelov, D, Dimov, G, Düntsch, I, Bennett, B. (2002). A proximity approach to some region-based theories of space. Journal of Applied Non-Classical Logics, 12(3), 527–559.CrossRefGoogle Scholar
  32. 32.
    Whitehead A. (1929). Process and reality. New York: Macmillan.Google Scholar
  33. 33.
    Zimmerman, D. (1996). Could extended objects be made out of simple parts? An argument for “atomless gunk”. Philosophy and Phenomenological Research, 56(1), 1–29.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Columbia UniversityNew YorkUSA
  2. 2.University of California, BerkeleyBerkeleyUSA

Personalised recommendations