Conformational Studies on Two FtsZ Targeting Cyclic Peptides

  • Nikolina VidovićEmail author
  • Teresa Recca
  • Pierangelo Francescato
  • Marco Rabuffetti
  • Maurizio Sironi
  • Francesco Oliva
  • Stefano Pieraccini
  • Giovanna SperanzaEmail author


Two FtsZ targeting cyclic peptides 1 (Ac-[Orn-Leu-Met-Asp]-Ala-Phe-Arg-Ser-NH2) and 2 (Ac-Ser-Leu-Met-[Asp-Ala-Phe-Arg-Orn]-NH2) were found to be inhibitors of FtsZ polymerization, that makes them excellent starting point for the future development of a new class of antimicrobials. We investigated their solution structure by means of nuclear magnetic resonance (NMR) and molecular dynamic simulations (MD). Deep analysis of 2D NMR spectra (COSY, TOCSY and NOESY), recorded in DMSO-d6, allowed the assignments of all peptide signals and suggested the presence of strong turn structures. We also noticed that the guanidine group of Arg significantly affects the spectral properties and the chromatographic behavior of these peptides depending on whether it makes part of the cycle or not. MD simulations allowed to investigate the conformational preference of the two cyclic peptides and to associate diversity in their structure and dynamics to their different behavior. In particular, peptide 1 showed enhanced flexibility and structural variance with respect to peptide 2.


Cyclic peptides FtsZ targeting peptides Conformation NMR Molecular dynamics 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any study with human or animals performed by any of the authors.

Supplementary material

10989_2019_9962_MOESM1_ESM.docx (1.3 mb)
Electronic supplementary material 1 (DOCX 1370 kb)


  1. Ahmad F, Chandrul KK, Naz H, Tandan N (2016) Designing of novel inhibitors of Mycobacterium Tuberculosis H37Rv by pharmacophore based drug designing and its evaluation. Int J Curr Res Acad Rev 4(9):59–70CrossRefGoogle Scholar
  2. Berendsen HJ, Postma JV, van Gunsteren WF, DiNola ARHJ, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690CrossRefGoogle Scholar
  3. Brenner V, Piuzzi F, Dimicoli I, Tardivel B, Mons M (2007) Chirality-controlled formation of β-turn secondary structures in short peptide chains: gas-phase experiment versus quantum chemistry. Angew Chem Int Ed 46:2463–2466CrossRefGoogle Scholar
  4. Burgess K, Ho KK, Pettitt BM (1995) Conformational effects of substituting methionine with (2S, 3S)-2,3-methanomethionine in Phe-Met-Arg-Phe-NH2. J Am Chem Soc 117:54–65CrossRefGoogle Scholar
  5. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101CrossRefGoogle Scholar
  6. Daura X, Gademann K, Jaun B, Seebach D, Van Gunsteren WF, Mark AE (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38(1–2):236–240CrossRefGoogle Scholar
  7. Desai P, Prachand M, Coutinho E, Saran A, Bodi J, Sülli-Vargha H (2002) Activity and conformation of a cyclic heptapeptide possessing the message sequence His-Phe-Arg-Trp of a-melanotropin. Int J Biol Macromol 30:187–195CrossRefGoogle Scholar
  8. Dyson HJ, Wright PE (1991) Defining solution conformations of small linear peptides. Annu Rev Biophys Chem 20:519–538CrossRefGoogle Scholar
  9. Gandini E, Dapiaggi F, Oliva F, Pieraccini S, Sironi M (2018) Well-tempered metadynamics based method to evaluate universal peptidomimetics. Chem Phys Lett 706:729–735CrossRefGoogle Scholar
  10. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725CrossRefGoogle Scholar
  11. Läppchen T, Hartog Aloysius AF, Pinas VA, Koomen GJ, den Blaauwen T (2005) GTP Analogue inhibits polymerization and GTPase activity of the bacterial protein FtsZ without affecting its eukaryotic homologue tubulin. Biochemistry 4:7879–7884CrossRefGoogle Scholar
  12. Marcelo F, Huecas S et al (2013) Interactions of bacterial cell division protein FtsZ with C8-substituted guanine nucleotide inhibitors: a combined NMR, biochemical and molecular modeling perspective. J. Am. Chem. Soc 135:16418–16428CrossRefGoogle Scholar
  13. Montelione G, Winkler ME, Rauenbuehler P, Wagner G (1989) Accurate measurements of long-range heteronuclear coupling constants from homonuclear 2D NMR spectra of isotope-enriched proteins. J Magn Reson 82:198–204Google Scholar
  14. Mukrasch MD, Markwick P, Biernat J, von Bergen M, Bernadó P, Griesinger C, Mandelkow E, Zweckstetter M, Blackledge M (2007) Highly populated turn conformations in natively unfolded tau protein identified from residual dipolar couplings and molecular simulation. J Am Chem Soc 129:5235–5243CrossRefGoogle Scholar
  15. Payne DJ et al (2008) Desperately seeking new antibiotics. Science 321:1644–1645CrossRefGoogle Scholar
  16. Pieraccini S, Rendine S, Jobichen C, Domadia P, Sivaraman J, Francescato P, Speranza G, Sironi M (2013) Computer aided design of FtsZ targeting oligopeptides. RSC Adv 3:1739–1743CrossRefGoogle Scholar
  17. Ramirez LS, Pande J, Shekhtman A (2019) Helical structure of recombinant melittin. J Phys Chem B 123:356–368CrossRefGoogle Scholar
  18. Schwarzinger S, Kroon GJA, Foss TR, Chung J, Wright PE, Dyson HJ (2001) Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123:2970–2978CrossRefGoogle Scholar
  19. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718CrossRefGoogle Scholar
  20. Wang J, Galgoci A et al (2003) Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J Biol Chem 278(45):44424–44428CrossRefGoogle Scholar
  21. White EL, Ross LJ, Reynolds RC, Seitz LE, Moore GD, Borhani GW (2000) Slow polymerization of Mycobacterium tuberculosis FtsZ. J Bacteriol 182(14):4028–4034CrossRefGoogle Scholar
  22. Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31(6):1647–1651CrossRefGoogle Scholar
  23. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, NYCrossRefGoogle Scholar
  24. Zhang L, Mallik B, Morikis D (2008) Structural study of Ac-Phe-[Orn-Pro-dCha-Trp-Arg], a potent C5a receptor antagonist, by NMR. Peptide Sci 90(6):803–815CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MilanMilanoItaly
  2. 2.Department of ChemistryUniversity of PaviaPaviaItaly
  3. 3.Department of Food, Environmental and Nutritional SciencesUniversity of MilanMilanoItaly
  4. 4.Institute of Molecular Science and Technologies (ISTM-CNR)MilanoItaly

Personalised recommendations