Advertisement

HESA-A Attenuates Hepatic Steatosis in NAFLD Rat Model Through the Suppression of SREBP-1c and NF-kβ

  • M. Efati
  • M. Khorrami
  • Z. JangraviEmail author
  • A. Z. MahmoudabadiEmail author
  • M. Raeiszadeh
  • J. R. Sarshoori
Article
  • 23 Downloads

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a chronic disorder, which is mainly considered a result of high-fat diet in humans. The clinical spectrum of NAFLD ranges from simple steatosis to nonalcoholic steatohepatitis (NASH) with irreversible complications. Therefore, early treatments, especially with medicinal plants can be considered as an important strategy in NAFLD treatment. This study aimed at investigating the effect of HESA-A (a herbal-marine supplement) on treatment of fatty liver in rats by evaluation of SREBP-1c and NF-kβ genes expression and biochemical analyses. In an experimental study, 28 male Wistar rats (weighing 180 ± 20 g), were divided to two groups and treated with a standard diet (n = 7) and a high-fat diet (HFD) (n = 21) for eight weeks. In order to confirm the NAFLD, the control group and seven rats of the HFD group were killed and biochemical parameters and histopathological changes were analyzed. The rest of the rats were divided to two groups and fed either atorvastatin (30 mg/kg/day) or HESA-A (500 mg/kg/day) for 30 days. Finally, serum biomarkers of liver damage, serum lipid profiles and gene expression of NF-kβ and SREBP-1c were investigated. Semi-quantitative Real Time-Polymerase Chain Reaction (RT-PCR) analyses showed that the expression of SREBP-1c and NF-kβ increased in NAFLD rat model compared to the control group. The expression level of SREBP-1c and NF-kβ genes showed a significant decrease in HESA-A and atorvastatin-treated groups in comparison to the control group. Biochemical analyses also confirmed these results. These findings showed that HESA-A could be used as an effective alternative in treatment of NAFLD with low side effects in comparison with atorvastatin as current medication.

Keywords

NAFLD Hepatic steatosis HESA-A NF-kβ SREBP-1c 

Notes

Acknowledgements

We would like to thank BMSU for allowing the use of the research laboratory.

Funding

This work was supported by Department of Biochemistry of BMSU and the authors.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Abbasi MM, Mehdipour M, Monfaredan A, Jahanban-Esfahlan R (2015) Hesa-A down-regulates erb/b2 oncogene expression and improves outcome of oral carcinoma in a rat model. Asian Pac J Cancer Prev 16(16):6947–6951CrossRefPubMedGoogle Scholar
  2. Ahmadi A (2006) Cytotoxicity and antitumor properties of a marine compound on cancer cells, HESA-A. Cancer Epidemiol Biomark Prevent 15(12 Supplement):B91Google Scholar
  3. Ahmadi A, Mohagheghi MA, Fazeli MS, Nahavandian B, Bashardoost N, Jarahi AM, et al (2005) HESA-A: new treatment for breast cancer and choroidal metastasis. Med Sci Monit 11(6):CR300–3PubMedGoogle Scholar
  4. Ahmadi A, Naderi G, Asgary S (2005) Evaluation of hepatoprotective potential of HESA-A (a marine compound) pretreatment against thioacetamide-induced hepatic damage in rabbits. Drugs Exp Clin Res 31(1):1–6PubMedGoogle Scholar
  5. Ahmadi A, Mohagheghi M, Karimi M, Seyed Ali G, Naseri M (2009) Anticancer effects of HESA-A in patients with metastatic colon cancer. Integr Cancer Ther 8(1):71–74CrossRefPubMedGoogle Scholar
  6. Ahmadian N, Pashaei-Asl R, Samadi N, Rahmati-Yamchi M, Rashidi MR, Ahmadian M et al (2016) Hesa-A effects on cell cycle signaling in esophageal carcinoma cell line. Middle East J Dig Dis 8(4):297–302CrossRefPubMedPubMedCentralGoogle Scholar
  7. Al-Sabaawy OM (2012) The relationship between serum lipid profile and selected trace elements for adult men in mosul city. Oman Med J 27(4):300–303CrossRefPubMedPubMedCentralGoogle Scholar
  8. Andronescu CI, Purcarea MR, Babes PA (2018) Nonalcoholic fatty liver disease: epidemiology, pathogenesis and therapeutic implications. J Med Life 11(1):20–23PubMedPubMedCentralGoogle Scholar
  9. Asprouli E, Kalafati IP, Sakellari A, Karavoltsos S, Vlachogiannakos J, Revenas K et al (2019) Evaluation of plasma trace elements in different stages of nonalcoholic fatty liver disease. Biol Trace Elem Res 188(2):326–333CrossRefPubMedGoogle Scholar
  10. Banach M, Mikhailidis DP (2018) Statin intolerance: some practical hints. Cardiol Clin 36(2):225–231CrossRefPubMedGoogle Scholar
  11. Dianat M, Veisi A, Ahangarpour A, Fathi Moghaddam H (2015) The effect of hydro-alcoholic celery (Apiumgraveolens) leaf extract on cardiovascular parameters and lipid profile in animal model of hypertension induced by fructose. Avicenna J Phytomed 5(3):203–209PubMedPubMedCentralGoogle Scholar
  12. Duan XY, Qiao L, Fan JG (2012) Clinical features of nonalcoholic fatty liver disease-associated hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 11(1):18–27CrossRefPubMedGoogle Scholar
  13. Engin A (2017) Non-alcoholic fatty liver disease. Adv Exp Med Biol 960:443–467CrossRefPubMedGoogle Scholar
  14. Farrell GC, Larter CZ (2006) Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43(2 Suppl 1):S99–S112CrossRefPubMedGoogle Scholar
  15. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ (2018) Mechanisms of NAFLD development and therapeutic strategies. Nat Med 24(7):908–922CrossRefPubMedPubMedCentralGoogle Scholar
  16. Guo CH, Chen PC, Ko WS (2013) Status of essential trace minerals and oxidative stress in viral hepatitis C patients with nonalcoholic fatty liver disease. Int J Med Sci 10(6):730–737CrossRefPubMedPubMedCentralGoogle Scholar
  17. Higuchi N, Kato M, Shundo Y, Tajiri H, Tanaka M, Yamashita N et al (2008) Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol Res 38(11):1122–1129CrossRefPubMedGoogle Scholar
  18. Iyer D, Patil UK (2019) Assessment of antihyperlipidemic and antitumor effect of isolated active phytoconstituents from Apium graveolens L. through bioassay-guided procedures. J Diet Suppl 16(2):193–206.CrossRefPubMedGoogle Scholar
  19. Jacometo CB, Osorio JS, Socha M, Correa MN, Piccioli-Cappelli F, Trevisi E et al (2015) Maternal consumption of organic trace minerals alters calf systemic and neutrophil mRNA and microRNA indicators of inflammation and oxidative stress. J Dairy Sci 98(11):7717–7729CrossRefPubMedGoogle Scholar
  20. Jarosz M, Olbert M, Wyszogrodzka G, Mlyniec K, Librowski T (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-kappaB signaling. Inflammopharmacology 25(1):11–24CrossRefPubMedPubMedCentralGoogle Scholar
  21. Koch LK, Yeh MM (2018) Nonalcoholic fatty liver disease (NAFLD): diagnosis, pitfalls, and staging. Ann Diagn Pathol 37:83–90CrossRefPubMedGoogle Scholar
  22. Kopalli SR, Koppula S (2015) Carum carvi linn (umbelliferae) attenuates lipopolysaccharide-induced neuroinflammatory responses via regulation of NF-kappa B signaling in BV-2 microglia. Trop J Pharm Res 14:7CrossRefGoogle Scholar
  23. Leclercq IA, Farrell GC, Sempoux C, Horsmans Y (2004) Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice. J Hepatol 41(6):926–934CrossRefPubMedGoogle Scholar
  24. Li M, Xu C, Shi J, Ding J, Wan X, Chen D et al (2017) Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Gut 67(12):2169–2180CrossRefPubMedPubMedCentralGoogle Scholar
  25. Loguercio C, De Girolamo V, Federico A, Feng SL, Crafa E, Cataldi V et al (2001) Relationship of blood trace elements to liver damage, nutritional status, and oxidative stress in chronic nonalcoholic liver disease. Biol Trace Elem Res 81(3):245–254CrossRefPubMedGoogle Scholar
  26. Luedde T, Schwabe RF (2011) NF-kappaB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 8(2):108–118CrossRefPubMedPubMedCentralGoogle Scholar
  27. Malaguarnera M, Di Rosa M, Nicoletti F, Malaguarnera L (2009) Molecular mechanisms involved in NAFLD progression. J Mol Med (Berl) 87(7):679–695CrossRefGoogle Scholar
  28. Mansi K, Abushoffa A, Disi A, Aburjai T (2009) Hypolipidemic effects of seed extract of celery (%3ci%3eApium graveolens %3c/i%3e) in rats. Pharmacogn Mag 5(20):301–305CrossRefGoogle Scholar
  29. Mehdipour M, Taghavi Zenouz A, Mesgari Abbasi M, Mohajeri D, Damghani H, Helli S et al (2013) Evaluation of the effect of two systemic doses of HESA-A on prevention of induced tongue neoplasm in rats. J Dent Res Dent Clin Dent Prospects 7(4):218–224PubMedPubMedCentralGoogle Scholar
  30. Mendez-Sanchez N, Cruz-Ramon VC, Ramirez-Perez OL, Hwang JP, Barranco-Fragoso B, Cordova-Gallardo J (2018) New aspects of lipotoxicity in nonalcoholic steatohepatitis. Int J Mol Sci 19(7):2034.CrossRefPubMedCentralGoogle Scholar
  31. Milosevic N, Milanovic M, Abenavoli L, Milic N (2014) Phytotherapy and NAFLD–from goals and challenges to clinical practice. Rev Recent Clin Trials 9(3):195–203CrossRefPubMedGoogle Scholar
  32. Moallem SA, Ahmadi A, Niapour M, Hosseini T, Habibi G (2009) Role of apoptosis in HESA–a teratogenicity in mouse fetus. Drug Chem Toxicol 32(3):186–190CrossRefPubMedGoogle Scholar
  33. Moallem SA, Ahmadi A, Moshafi M, Taghavi MM (2011) Teratogenic effects of HESA-A, a natural anticancer product from Iran, in mice. Hum Exp Toxicol 30(8):851–859CrossRefPubMedGoogle Scholar
  34. Moon YA (2017) The SCAP/SREBP pathway: a mediator of hepatic steatosis. Endocrinol Metab (Seoul) 32(1):6–10CrossRefGoogle Scholar
  35. Napetschnig J, Wu H (2013) Molecular basis of NF-kappaB signaling. Annu Rev Biophys 42:443–468CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nascimbeni F, Ballestri S, Machado MV, Mantovani A, Cortez-Pinto H, Targher G et al (2018) Clinical relevance of liver histopathology and different histological classifications of NASH in adults. Expert Rev Gastroenterol Hepatol 12(4):351–367CrossRefPubMedGoogle Scholar
  37. Nazem MR, Asadi M, Jabbari N, Allameh A (2019) Effects of zinc supplementation on superoxide dismutase activity and gene expression, and metabolic parameters in overweight type 2 diabetes patients: a randomized, double-blind, controlled trial. Clin Biochem 69:15–20CrossRefPubMedGoogle Scholar
  38. Nettore IC, De Nisco E, Desiderio S, Passaro C, Maione L, Negri M et al (2017) Selenium supplementation modulates apoptotic processes in thyroid follicular cells. BioFactors 43(3):415–423CrossRefPubMedGoogle Scholar
  39. Pillai SS, Sugathan JK, Indira M (2012) Selenium downregulates RAGE and NFkappaB expression in diabetic rats. Biol Trace Elem Res 149(1):71–77CrossRefPubMedGoogle Scholar
  40. Ratziu V, Goodman Z, Sanyal A (2015) Current efforts and trends in the treatment of NASH. J Hepatol 62(1 Suppl):S65–75CrossRefPubMedGoogle Scholar
  41. Rodriguez-Calvo R, Barroso E, Serrano L, Coll T, Sanchez RM, Merlos M et al (2009) Atorvastatin prevents carbohydrate response element binding protein activation in the fructose-fed rat by activating protein kinase A. Hepatology 49(1):106–115CrossRefPubMedGoogle Scholar
  42. Romero-Gomez M, Zelber-Sagi S, Trenell M (2017) Treatment of NAFLD with diet, physical activity and exercise. J Hepatol 67(4):829–846CrossRefPubMedGoogle Scholar
  43. Sears B, Perry M (2015) The role of fatty acids in insulin resistance. Lipids Health Dis 14:121CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sharma DL, Lakhani HV, Klug RL, Snoad B, El-Hamdani R, Shapiro JI et al (2017) Investigating molecular connections of non-alcoholic fatty liver disease with associated pathological conditions in West Virginia for biomarker analysis. J Clin Cell Immunol.  https://doi.org/10.4172/2155-9899.1000523.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Shenkin A (1995) Trace elements and inflammatory response: implications for nutritional support. Nutrition 11(1 Suppl):100–105PubMedGoogle Scholar
  46. Thompson PD, Panza G, Zaleski A, Taylor B (2016) Statin-associated side effects. J Am Coll Cardiol 67(20):2395–2410CrossRefPubMedGoogle Scholar
  47. Videla LA, Rodrigo R, Araya J, Poniachik J (2006) Insulin resistance and oxidative stress interdependency in non-alcoholic fatty liver disease. Trends Mol Med 12(12):555–558CrossRefPubMedGoogle Scholar
  48. Younossi ZM, Marchesini G, Pinto-Cortez H, Petta S (2019) Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: implications for liver transplantation. Transplantation 103(1):22–27CrossRefPubMedGoogle Scholar
  49. Zeng L, Tang WJ, Yin JJ, Zhou BJ (2014) Signal transductions and nonalcoholic fatty liver: a mini-review. Int J Clin Exp Med 7(7):1624–1631PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Biochemical Department of Medical FacultyBaqiyatallah University of Medical ScienceTehranIran
  2. 2.Nanobiotechnology Research CenterBaqiyatallah University of Medical ScienceTehranIran
  3. 3.Department of SurgeryBaqiyatallah University of Medical SciencesTehranIran
  4. 4.Anatomy Department of Medical FacultyBaqiyatallah University of Medical ScienceTehranIran

Personalised recommendations