Advertisement

Pierce into the Native Structure of Ata, a Trimeric Autotransporter of Acinetobacter baumannii ATCC 17978

  • Mohammad Reza Rahbar
  • Mahboubeh Zarei
  • Abolfazl Jahangiri
  • Saeed Khalili
  • Navid Nezafat
  • Manica Negahdaripour
  • Yaser Fattahian
  • Younes GhasemiEmail author
Article
  • 27 Downloads

Abstract

Acinetobacter baumannii is an important pathogen responsible for nosocomial infections worldwide. Trimeric autotransporters, the obligate homotrimeric adhesins, are involved in adherence of bacterial cells to various surfaces. These sorts of adhesins were shown to be expressed by A. baumannii. Trimeric autotransporters are modular virulence factors, containing numerous domains and structural architectures. The better understanding of the sequence and structural features of virulence factors are crucial in designing new therapeutic strategies. In this regard, with the aid of reliable in silico tools and the concept of “inherence through homology”, some sequence and structural features of AtaA.baumannii were unveiled. Domain architectures such as the position of repetitive modules, and coiled-coils, along with the prediction of tertiary and quaternary structures, allows us to define some important landscapes of AtaA.baumannii virulence factor. In addition, through CLANS analysis of TAA sequences of Moraxellaceae family, it was concluded that Ata contains several conserved of structural blocks of TAAs. The protein is initiated with extended signal peptide region, a stalk of several head domains and a membrane anchoring region. The globular heads are connected to each other by neck mediators and coiled-coil regions. Several fibronectin and collagen binding sites were defined within the structures. Minimal and maximal frustrated contacts are distributed within the structure of Ata, which suggest both the flexibility and toughness. These are come together for creating an efficient adhesin which is able to bind and bend through multiple sites. The protein could be great target for designing new vaccines or anti-virulence drug.

Keywords

Acinetobacter baumannii Bioinformatics Adhesin Quaternary structure Virulence factor 

Notes

Acknowledgements

The authors wish to thanks Pharmaceutical Science Research Center, Shiraz University of Medical Science.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10989_2019_9920_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1596 kb)

References

  1. Agnew C et al (2011) Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding. Proc Natl Acad Sci 108:15174–15178CrossRefGoogle Scholar
  2. Alva V, Nam S-Z, Söding J, Lupas AN (2016) The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res 44:W410–W415CrossRefGoogle Scholar
  3. Baek M, Park T, Heo L, Park C, Seok C (2017) GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Res 45:W320–W324CrossRefGoogle Scholar
  4. Bassler J, Alvarez BH, Hartmann MD, Lupas AN (2015) A domain dictionary of trimeric autotransporter adhesins. Int J Med Microbiol 305:265–275CrossRefGoogle Scholar
  5. Bentancor LV, Camacho-Peiro A, Bozkurt-Guzel C, Pier GB, Maira-Litrán T (2012) Identification of Ata, a multifunctional trimeric autotransporter of Acinetobacter baumannii. J Bacteriol 194:3950–3960CrossRefGoogle Scholar
  6. Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T (2017) Modeling protein quaternary structure of homoand hetero-oligomers beyond binary interactions by homology. Sci Rep 7:10480CrossRefGoogle Scholar
  7. Bhattacharyya R, Chakrabarti P (2003) Stereospecific interactions of proline residues in protein structures and complexes. J Mol Biol 331:925–940CrossRefGoogle Scholar
  8. Biegert A, Söding J (2008) HHrepID: de novo protein repeat identification by probabilistic consistency. Bioinformatics 24:807–814CrossRefGoogle Scholar
  9. Bio C (2017) CLC genomics workbench. http://www.clcbio.com
  10. Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17CrossRefGoogle Scholar
  11. Chen VB et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D 66:12–21CrossRefGoogle Scholar
  12. Consortium U (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169CrossRefGoogle Scholar
  13. Cotter SE, Surana NK, Geme JWS III (2005) Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends Microbiol 13:199–205CrossRefGoogle Scholar
  14. Czibener C, Ugalde JE (2012) Identification of a unique gene cluster of Brucella spp. that mediates adhesion to host cells. Microbes Infect 14:79–85CrossRefGoogle Scholar
  15. Dautin N, Bernstein HD (2007) Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol 61:89–112CrossRefGoogle Scholar
  16. De Gregorio E, Del Franco M, Martinucci M, Roscetto E, Zarrilli R, Di Nocera PP (2015) Biofilm-associated proteins: news from Acinetobacter. BMC Genomics 16:933CrossRefGoogle Scholar
  17. Diard M, Hardt W-D (2017) Evolution of bacterial virulence. FEMS Microbiol Rev 41:679–697CrossRefGoogle Scholar
  18. Dickey SW, Cheung GY, Otto M (2017) Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 16:457CrossRefGoogle Scholar
  19. Dormitzer PR, Grandi G, Rappuoli R (2012) Structural vaccinology starts to deliver. Nat Rev Microbiol 10:807CrossRefGoogle Scholar
  20. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  21. Ferreiro DU, Komives EA, Wolynes PG (2014) Frustration in biomolecules. Q Rev Biophys 47:285–363CrossRefGoogle Scholar
  22. Finn RD et al (2017) InterPro in 2017—beyond protein family and domain annotations. Nucleic Acids Res 45:D190–D199CrossRefGoogle Scholar
  23. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563CrossRefGoogle Scholar
  24. Frickey T, Lupas A (2004) CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20:3702–3704CrossRefGoogle Scholar
  25. Gaddy JA, Tomaras AP, Actis LA (2009) The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun 77:3150–3160CrossRefGoogle Scholar
  26. Geme JWS, Cutter D (2000) The Haemophilus influenzae Hia adhesin is an autotransporter protein that remains uncleaved at the C terminus and fully cell associated. J Bacteriol 182:6005–6013CrossRefGoogle Scholar
  27. Grin I et al (2014) A trimeric lipoprotein assists in trimeric autotransporter biogenesis in enterobacteria. J Biol Chem 289:7388–7398CrossRefGoogle Scholar
  28. Harding CM, Hennon SW, Feldman MF (2018) Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 16:91CrossRefGoogle Scholar
  29. Hoiczyk E, Roggenkamp A, Reichenbecher M, Lupas A, Heesemann J (2000) Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. EMBO J 19:5989–5999CrossRefGoogle Scholar
  30. Hsu L-Y, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA (2017) Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in south and southeast Asia. Clin Microbiol Rev 30:1–22CrossRefGoogle Scholar
  31. Illergård K, Ardell DH, Elofsson A (2009) Structure is three to ten times more conserved than sequence—a study of structural response in protein cores. Proteins 77:499–508CrossRefGoogle Scholar
  32. Imperi F, Antunes L, Blom J, Villa L, Iacono M, Visca P, Carattoli A (2011) The genomics of Acinetobacter baumannii: insights into genome plasticity, antimicrobial resistance and pathogenicity. IUBMB Life 63:1068–1074CrossRefGoogle Scholar
  33. Ishikawa M, Nakatani H, Hori K (2012) AtaA, a new member of the trimeric autotransporter adhesins from Acinetobacter sp. Tol 5 mediating high adhesiveness to various abiotic surfaces. PLoS ONE 7:e48830CrossRefGoogle Scholar
  34. Jahangiri A, Rasooli I, Owlia P, Fooladi AAI, Salimian J (2018) An integrative in silico approach to the structure of Omp33-36 in Acinetobacter baumannii. Comput Biol Chem 72:77–86CrossRefGoogle Scholar
  35. Jenik M, Parra RG, Radusky LG, Turjanski A, Wolynes PG, Ferreiro DU (2012) Protein frustratometer: a tool to localize energetic frustration in protein molecules. Nucleic Acids Res 40:W348–W351CrossRefGoogle Scholar
  36. Kini RM, Evans HJ (1995) A hypothetical structural role for proline residues in the flanking segments of protein-protein interaction sites. Biochem Biophys Res Commun 212:1115–1124CrossRefGoogle Scholar
  37. Koiwai K, Hartmann MD, Linke D, Lupas AN, Hori K (2016) Structural basis for toughness and flexibility in the C-terminal passenger domain of an Acinetobacter trimeric autotransporter adhesin. J Biol Chem 291:3705–3724CrossRefGoogle Scholar
  38. Lee D, Redfern O, Orengo C (2007) Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol 8:995–1005CrossRefGoogle Scholar
  39. Lensink MF, Velankar S, Baek M, Heo L, Seok C, Wodak SJ (2018) The challenge of modeling protein assemblies: the CASP12-CAPRI experiment. Proteins 86:257–273CrossRefGoogle Scholar
  40. Letunic I, Bork P (2017) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493–D496CrossRefGoogle Scholar
  41. Linke D, Riess T, Autenrieth IB, Lupas A, Kempf VA (2006) Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol 14:264–270CrossRefGoogle Scholar
  42. Longo F, Vuotto C, Donelli G (2014) Biofilm formation in Acinetobacter baumannii. New Microbiol 37:119–127Google Scholar
  43. Marchaim D et al (2017) Clinical and molecular epidemiology of Acinetobacter baumannii bloodstream infections in an endemic setting. Future Microbiol 12:271–283CrossRefGoogle Scholar
  44. Martín-Aspas A, Guerrero-Sánchez FM, García-Colchero F, Rodríguez-Roca S, Girón-González J-A (2018) Differential characteristics of Acinetobacter baumannii colonization and infection: risk factors, clinical picture, and mortality. Infect Drug Resist 11:861CrossRefGoogle Scholar
  45. Masood TB, Sandhya S, Chandra N, Natarajan V (2015) CHEXVIS: a tool for molecular channel extraction and visualization. BMC Bioinform 16:119CrossRefGoogle Scholar
  46. McConnell MJ, Actis L, Pachón J (2013) Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev 37:130–155CrossRefGoogle Scholar
  47. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405CrossRefGoogle Scholar
  48. Meng G, Surana NK, St Geme JW, Waksman G (2006) Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J 25:2297–2304CrossRefGoogle Scholar
  49. Meng G, Geme JWS III, Waksman G (2008) Repetitive architecture of the Haemophilus influenzae Hia trimeric autotransporter. J Mol Biol 384:824–836CrossRefGoogle Scholar
  50. Negahdaripour M et al (2017) A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. Infect Genet Evol 54:402–416CrossRefGoogle Scholar
  51. Neville N, Jia Z (2019) Approaches to the structure-based design of antivirulence drugs: therapeutics for the post-antibiotic era. Molecules 24:378CrossRefGoogle Scholar
  52. Nezafat N, Eslami M, Negahdaripour M, Rahbar MR, Ghasemi Y (2017) Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. Mol BioSyst 13:699–713.  https://doi.org/10.1039/C6MB00772D CrossRefGoogle Scholar
  53. Nummelin H, Merckel MC, Leo JC, Lankinen H, Skurnik M, Goldman A (2004) The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed parallel β-roll. EMBO J 23:701–711CrossRefGoogle Scholar
  54. Parra RG, Schafer NP, Radusky LG, Tsai M-Y, Guzovsky AB, Wolynes PG, Ferreiro DU (2016) Protein Frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatics. Nucleic Acids Res 44:W356–W360CrossRefGoogle Scholar
  55. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefGoogle Scholar
  56. Rahbar MR et al (2019) Trimeric autotransporter adhesins in Acinetobacter baumannii, coincidental evolution at work. Infect Genet Evol 71:116–127CrossRefGoogle Scholar
  57. Ritter B, Denisov AY, Philie J, Deprez C, Tung EC, Gehring K, McPherson PS (2004) Two WXXF-based motifs in NECAPs define the specificity of accessory protein binding to AP-1 and AP-2. EMBO J 23:3701–3710CrossRefGoogle Scholar
  58. Roche DB, Do Viet P, Bakulina A, Hirsh L, Tosatto SC, Kajava AV (2017) Classification of β-hairpin repeat proteins. J Struct Biol 201(2):130–138CrossRefGoogle Scholar
  59. Rodríguez-Baño J et al (2009) Long-term control of hospital-wide, endemic multidrug-resistant Acinetobacter baumannii through a comprehensive “bundle” approach. Am J Infect Control 37:715–722CrossRefGoogle Scholar
  60. Schneewind O, Missiakas D (2014) Sec-secretion and sortase-mediated anchoring of proteins in Gram-positive bacteria. Biochem Biophys Acta 1843(8):1687–1697.  https://doi.org/10.1016/j.bbamcr.2013.11.009 CrossRefGoogle Scholar
  61. Sijbrandi R, Urbanus ML, Corinne M, Bernstein HD, Oudega B, Otto BR, Luirink J (2003) Signal recognition particle (SRP)-mediated targeting and Sec-dependent translocation of an extracellular Escherichia coli protein. J Biol Chem 278:4654–4659CrossRefGoogle Scholar
  62. Simm D, Hatje K, Kollmar M (2015) Waggawagga: comparative visualization of coiled-coil predictions and detection of stable single α-helices (SAH domains). Bioinformatics 31:767–769CrossRefGoogle Scholar
  63. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248CrossRefGoogle Scholar
  64. Szabady RL, Peterson JH, Skillman KM, Bernstein HD (2005) An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc Natl Acad Sci USA 102:221–226CrossRefGoogle Scholar
  65. Szczesny P et al (2008) Structure of the head of the Bartonella adhesin BadA. PLoS Pathog 4:e1000119CrossRefGoogle Scholar
  66. Wang S, Li W, Liu S, Xu J (2016) RaptorX-Property: a web server for protein structure property prediction. Nucleic Acids Res 44:W430–W435CrossRefGoogle Scholar
  67. Webb B, Sali A (2014) Protein structure modeling with MODELLER. Curr Protoc Bioinform 47(1):5CrossRefGoogle Scholar
  68. Weidensdorfer M et al (2016) Analysis of endothelial adherence of Bartonella henselae and Acinetobacter baumannii using a dynamic human ex vivo infection model. Infect Immun 84:711–722CrossRefGoogle Scholar
  69. Wood CR, Mack LE, Actis LA (2018) An update on the Acinetobacter baumannii regulatory circuitry. Trends Microbiol 26(7):560–562CrossRefGoogle Scholar
  70. Xu D, Zhang Y (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 101:2525–2534CrossRefGoogle Scholar
  71. Yang J, Wang Y, Zhang Y (2016) ResQ: an approach to unified estimation of B-factor and residue-specific error in protein structure prediction. J Mol Biol 428:693–701CrossRefGoogle Scholar
  72. Zimmermann L et al (2017) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430(15):2237–2243CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShirazIran
  2. 2.Applied Microbiology Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
  3. 3.Department of Biology SciencesShahid Rajaee Teacher Training UniversityTehranIran
  4. 4.Department of Pharmaceutical Biotechnology, School of PharmacyShiraz University of Medical SciencesShirazIran
  5. 5.Department of Biotechnology, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran

Personalised recommendations