Antibacterial Activity of Cysteine-Derived Cationic Dipeptides

  • Yu-Cheng Tsai
  • Chen-Chi Tang
  • Hsu-Heng Wu
  • Yu-Shiang Wang
  • Yu-Fon ChenEmail author


Antibiotic resistance is a growing problem, especially in the treating of life-threatening diseases like sepsis. One way to address such an issue is with the use of antimicrobial peptides, which can kill many types of bacteria by disrupting cellular targets (such as membranes) through electrostatic interaction. In this report, cysteine-derived cationic dipeptides lysine–cysteine (KC), arginine–cysteine (RC) and histidine–cysteine (HC) were used to evaluate antibacterial activity against Gram-negative and positive bacteria. The dipeptides exhibited bacterial membrane rupture capabilities under SEM observation after treatment with IC50 conditions, as well as low cytotoxicity and hemolytic activity toward normal cell lines and human red blood cells (RBCs) at IC50. Furthermore, the dipeptides significantly ameliorated Enterohaemorrhagic E. coli (EHEC)-induced lethality in Caenorhabditis elegans in a dose-dependent manner. These cysteine-derived cationic dipeptides may provide a novel alternative therapy in combating bacterial infection.


Cysteine Cationic amino acid Enterohaemorrhagic E. coli Caenorhabditis elegans 



The authors acknowledge the financial support from the Ministry of Science and Technology, Taiwan (107-2218-E-006-016).

Compliance with Ethical Standards

Conflict of interest

The authors have nothing to disclose.


  1. Aderem A (2003) Phagocytosis and the inflammatory response. J Infect Dis 187(Suppl 2):S340–S345CrossRefGoogle Scholar
  2. Alonso JM (2008) Immunity and pathophysiology of respiratory tract infections. Med Mal Infect 38:433–437CrossRefGoogle Scholar
  3. Banerji B, Pramanik SK, Pal U, Maiti NC (2013) Potent anticancer activity of cystine-based dipeptides and their interaction with serum albumins. Chem Cent J 7:91CrossRefGoogle Scholar
  4. Bartzatt R, Grillo SLG, Grillo JD (2007) Antibacterial activity of dipeptide constructs of acetylsalicylic acid and nicotinic acid. Drug Deliv 14:105–109CrossRefGoogle Scholar
  5. Buckley CD, Pilling D, Henriquez NV, Parsonage G, Threlfall K, Scheel-Toellner D, Simmons DL, Akbar AN, Lord JM, Salmon M (1999) RGD peptides induce apoptosis by direct caspase-3 activation. Nature 397:534–539CrossRefGoogle Scholar
  6. Caldeira E, Piskin E, Granadeiro L, Silva F, Gouveia IC (2013) Biofunctionalization of cellulosic fibres with l-cysteine: assessment of antibacterial properties and mechanism of action against Staphylococcus aureus and Klebsiella pneumoniae. J Biotechnol 168:426–435CrossRefGoogle Scholar
  7. Chou TC, Chiu HC, Kuo CJ, Wu CM, Syu WJ, Chiu WT, Chen CS (2013) Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cell Microbiol 15:82–97CrossRefGoogle Scholar
  8. Dalzoppo D, Di Paolo V, Calderan L, Pasut G, Rosato A, Caccuri AM, Quintieri L (2017) Thiol-activated anticancer agents: the state of the art. Anti-Cancer Agent Med Chem 17:4–20Google Scholar
  9. Dobrzynska I, Szachowicz-Petelska B, Sulkowski S, Figaszewski Z (2005) Changes in electric charge and phospholipids composition in human colorectal cancer cells. Mol Cell Biochem 276:113–119CrossRefGoogle Scholar
  10. Epand RM, Walker C, Epand RF, Magarvey NA (2016) Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta 1858:980–987CrossRefGoogle Scholar
  11. Fura JM, Pidgeon SE, Birabaharan M, Pires MM (2016) Dipeptide-based metabolic labeling of bacterial cells for endogenous antibody recruitment. ACS Infect Dis 2:302–309CrossRefGoogle Scholar
  12. Geissler S, Zwarg M, Knutter I, Markwardt F, Brandsch M (2010) The bioactive dipeptide anserine is transported by human proton-coupled peptide transporters. FEBS J 277:790–795CrossRefGoogle Scholar
  13. Gorbitz CH (2006) The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s beta-amyloid polypeptide. Chem Commun (Camb) 22:2332–2334CrossRefGoogle Scholar
  14. Gouveia IC, Sa D, Henriques M (2012) Functionalization of wool with l-cysteine: process characterization and assessment of antimicrobial activity and cytotoxicity. J Appl Polym Sci 124:1352–1358CrossRefGoogle Scholar
  15. Guiotto A, Calderan A, Ruzza P, Borin G (2005) Carnosine and carnosine-related antioxidants: a review. Curr Med Chem 12:2293–2315CrossRefGoogle Scholar
  16. Habimana O, Semiao AJC, Casey E (2014) The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltrationfreverse osmosis membranes. J Membr Sci 454:82–96CrossRefGoogle Scholar
  17. Huber A, Hajdu D, Bratschun-Khan D, Gaspari Z, Varbanov M, Philippot S, Fizil A, Czajlik A, Kele Z, Sonderegger C et al (2018) New antimicrobial potential and structural properties of PAFB: a cationic, cysteine-rich protein from Penicillium chrysogenum Q176. Sci Rep 8:1751CrossRefGoogle Scholar
  18. Koshiba T, Hashii T, Kawabata SI (2007) A structural perspective on the interaction between lipopolysaccharide and Factor C, a receptor involved in recognition of Gram-negative bacteria. J Biol Chem 282:3962–3967CrossRefGoogle Scholar
  19. Lam SJ, O’Brien-Simpson NM, Pantarat N, Sulistio A, Wong EHH, Chen YY, Lenzo JC, Holden JA, Blencowe A, Reynolds EC et al (2016) Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat Microbiol 1:16162CrossRefGoogle Scholar
  20. Lambert JD, Sang S, Hong J, Yang CS (2010) Anticancer and anti-inflammatory effects of cysteine metabolites of the green tea polyphenol, (-)-epigallocatechin-3-gallate. J Agric Food Chem 58:10016–10019CrossRefGoogle Scholar
  21. Lee BS, Huang JS, Jayathilaka GD, Lateef SS, Gupta S (2010) Production of antipeptide antibodies. Methods Mol Biol 657:93–108CrossRefGoogle Scholar
  22. Liang SY, Zhou Q, Wang M, Zhu YH, Wu QZ, Yang XL (2015) Water-soluble l-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int J Nanomed 10:2325CrossRefGoogle Scholar
  23. Mader JS, Hoskin DW (2006) Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 15:933–946CrossRefGoogle Scholar
  24. Malkawi R, Iyer A, Parmar A, Lloyd DG, Goh ETL, Taylor EJ, Sarmad S, Madder A, Lakshminarayanan R, Singh I (2018) Cysteines and disulfide-bridged macrocyclic mimics of teixobactin analogues and their antibacterial activity evaluation against methicillin-resistant Staphylococcus aureus (MRSA). Pharmaceutics 10:183CrossRefGoogle Scholar
  25. Maroti G, Downie JA, Kondorosi E (2015) Plant cysteine-rich peptides that inhibit pathogen growth and control rhizobial differentiation in legume nodules. Curr Opin Plant Biol 26:57–63CrossRefGoogle Scholar
  26. McGhee JD, Sleumer MC, Bilenky M, Wong K, McKay SJ, Goszczynski B, Tian H, Krich ND, Khattra J, Holt RA et al (2007) The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. Dev Biol 302:627–645CrossRefGoogle Scholar
  27. Mikulass KR, Nagy K, Bogos B, Szegletes Z, Kovacs E, Farkas A, Varo G, Kondorosi E, Kereszt A (2016) Antimicrobial nodule-specific cysteine-rich peptides disturb the integrity of bacterial outer and inner membranes and cause loss of membrane potential. Ann Clin Microbiol Antimicrob 15:43CrossRefGoogle Scholar
  28. Odeberg J, Wirsen A, Norberg A, Frie J, Printz G, Lagercrantz H, Gudmundsson GH, Agerberth B, Jonsson B (2018) A novel cysteine-linked antibacterial surface coating significantly inhibits bacterial colonization of nasal silicone prongs in a phase one pre-clinical trial. Mater Sci Eng C 93:782–789CrossRefGoogle Scholar
  29. Perazzo J, Castanho MA, Sa Santos S (2016) Pharmacological potential of the endogenous dipeptide kyotorphin and selected derivatives. Front Pharmacol 7:530Google Scholar
  30. Saini SK, Ostermeir K, Ramnarayan VR, Schuster H, Zacharias M, Springer S (2013) Dipeptides promote folding and peptide binding of MHC class I molecules. Proc Natl Acad Sci USA 110:15383–15388CrossRefGoogle Scholar
  31. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a00414CrossRefGoogle Scholar
  32. Sivakamavalli J, Nirosha R, Vaseeharan B (2015) Purification and characterization of a cysteine-rich 14-kDa antibacterial peptide from the granular hemocytes of mangrove crab Episesarma tetragonum and its antibiofilm activity. Appl Biochem Biotechnol 176:1084–1101CrossRefGoogle Scholar
  33. Song SH, Fu SN, Sun XY, Li P, Wu JE, Dong TY, He F, Deng YY (2018) Identification of cyclic dipeptides from Escherichia coli as new antimicrobial agents against Ralstonia solanacearum. Molecules 23:214CrossRefGoogle Scholar
  34. Thanner S, Drissner D, Walsh F (2016) Antimicrobial resistance in agriculture. MBio 7:e02215–e02227Google Scholar
  35. Wada N, Yamanaka S, Shibato J, Rakwal R, Hirako S, Iizuka Y, Kim H, Matsumoto A, Kimura A, Takenoya F et al (2016) Behavioral and omics analyses study on potential involvement of dipeptide balenine through supplementation in diet of senescence-accelerated mouse prone 8. Genomics Data 10:38–50CrossRefGoogle Scholar
  36. Wattana-Amorn P, Charoenwongsa W, Williams C, Crump MP, Apichaisataienchote B (2016) Antibacterial activity of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) from Streptomyces sp. strain 22-4 against phytopathogenic bacteria. Nat Prod Res 30:1980–1983CrossRefGoogle Scholar
  37. Woolhouse M, Ward M, van Bunnik B, Farrar J (2015) Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc Lond B Biol Sci 370:20140083CrossRefGoogle Scholar
  38. Xu QB, Gu JY, Zhao Y, Ke XT, Liu XD (2017) Antibacterial cotton fabric with enhanced durability prepared using l-cysteine and silver nanoparticles. Fiber Polym 18:2204–2211CrossRefGoogle Scholar
  39. Xu QB, Duan PP, Zhang YY, Fu FY, Liu XD (2018) Double protect copper nanoparticles loaded on l-cysteine modified cotton fabric with durable antibacterial properties. Fiber Polym 19:2324–2334CrossRefGoogle Scholar
  40. Zhong J, Wang WH, Yang XM, Yan XW, Liu R (2013) A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica. Peptides 39:1–5CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yu-Cheng Tsai
    • 1
  • Chen-Chi Tang
    • 1
  • Hsu-Heng Wu
    • 1
  • Yu-Shiang Wang
    • 1
  • Yu-Fon Chen
    • 1
    Email author
  1. 1.Department of Chemical EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations