Health Promoting Effects of Food-Derived Bioactive Peptides: A Review

  • Sanusi Bello MadaEmail author
  • Chizoba Paul Ugwu
  • Muawiyya Musa Abarshi


Bioactive peptides are functional agents encrypted in food proteins with several potential health benefits. Food-derived proteins when hydrolysed release large variety of bioactive peptides which are similar in structure to peptide sequences acting in the organism as endogenous signals, or hormones and alter their physiological functions. Moreover, these bioactive peptides owing to their high tissue affinity, specificity and efficiency can interact with receptors, enzymes and certain biomolecules in organism thereby confer health promoting effects. In addition, several studies have revealed that these peptides exhibit beneficial effects for the treatment and management of chronic and several degenerative diseases including hypertension, diabetes, obesity and cancer. Therefore, this review mainly used ISI, SCOPUS and PubMed indexed journals containing various experimental reports on in vitro and in vivo studies from humans and animals to elucidate the potential health promoting effects of food-derived bioactive peptides with emphasis on antihypertensive peptides, antidiabetic peptides, cholesterol-lowering peptides, anticancer peptides, and antimicrobial peptides.


Degenerative diseases Food Bioactive peptides Health benefits Mechanism of action 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.


  1. Abdel-Hamid M, Otte J, De Gobba C, Osman A, Hamad E (2017) Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. Int Dairy J 66:91–98CrossRefGoogle Scholar
  2. Adje EY, Balti R, Lecouturier D, Kouach M, Dhulster P, Guillochon D, Nedjar-Arroume N (2013) Controlled enzymatic hydrolysis: a new strategy for the discovery of antimicrobial peptides. Probiotics Antimicrob Proteins 5:176–186CrossRefPubMedGoogle Scholar
  3. Aguilar-Toalá J, Santiago-López L, Peres C, Peres C, Garcia H, Vallejo-Cordoba B, González-Córdova A, Hernández-Mendoza A (2017) Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J Dairy Sci 100:65–75CrossRefPubMedGoogle Scholar
  4. Aissaoui N, Chobert JM, Haertlé T, Marzouki MN, Abidi F (2016) Purification and biochemical characterization of a neutral serine protease from Trichoderma harzianum. Use in antibacterial peptide production from a fish by-product hydrolysate. Appl Biochem Biotech 182(2):831–845CrossRefGoogle Scholar
  5. Alan D (2006) The Oxford companion to food, 2nd edn. Oxford University Press, Oxford, pp 81–82Google Scholar
  6. Anna T, Alexey K, Anna B, Vyacheslav K, Mikhail T, Ulia M (2016) Effect of in vitro gastrointestinal digestion on bioactivity of poultry protein. Curr Res Nutr Food Sci 4(SI.2):77–86CrossRefGoogle Scholar
  7. Arias M, Hilchie AL, Haney EF, Bolscher JG, Hyndman ME, Hancock RE (2017) Anticancer activities of bovine and human lactoferricin-derived peptides. Biochem Cell Biol 95:91–98CrossRefPubMedGoogle Scholar
  8. Asoodeh A, Homayouni-Tabrizi M, Shabestarian H, Emtenani S (2016) Biochemical characterization of a novel antioxidant and angiotensin I-converting enzyme inhibitory peptide from Struthio camelus egg white protein hydrolysis. J Food Drug Anal 24(2):332–342CrossRefPubMedGoogle Scholar
  9. Babini E, Tagliazucchi D, Martini S, Dei Più L, Gianotti A (2017) LC-ESI-QTOF-MS identification of novel antioxidant peptides obtained by enzymatic and microbial hydrolysis of vegetable proteins. Food Chem 228:186–196CrossRefPubMedGoogle Scholar
  10. Bamdad F, Shin SH, Suh J, Nimalaratne C, Sunwoo H (2017) Anti-inflammatory and antioxidant properties of casein hydrolysates produced using high hydrostatic pressure combined with proteolytic enzymes. Molecules 22:609CrossRefPubMedCentralGoogle Scholar
  11. Basilicata MJ, Pepe G, Adesso S, Ostacolo C, Sala M, Sommella E, Scala MC, Messore A, Autore G, Marzocco S, Campiglia P (2018) Antioxidant properties of buffalo-milk dairy products: a β-Lg peptide released after gastrointestinal digestion of buffalo ricotta cheese reduces oxidative stress in intestinal epithelial cells. Int J Mol Sci 19:1955CrossRefPubMedCentralGoogle Scholar
  12. Bayir H (2005) Reactive oxygen species. Crit Care Med 33(12):S498–S501CrossRefPubMedGoogle Scholar
  13. Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M (1992) Identification of the bactericidal domain of lactoferrin. Biochin Biophys Acta 1121:130–136CrossRefGoogle Scholar
  14. Boga S, Bouzada D, Pena DG, Lopez MV, Vazquez ME (2018) Sequence-specific DNA recognition with designed peptides. Eur J Org Chem 3:249–261CrossRefGoogle Scholar
  15. Borawska J, Darewicz M, Pliszka M, Vegarud GE (2016) Antioxidant properties of salmon (Salmo salar L.) protein fraction hydrolysates revealed following their ex vivo digestion and in vitro hydrolysis. J Sci Food Agric 96:2764–2772CrossRefPubMedGoogle Scholar
  16. Capriotti AL, Caruso G, Cavaliere C, Samperi R, Ventura S, Chiozzi RZ, Lagana A (2015) Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. J Food Compost Anal 44:205–213CrossRefGoogle Scholar
  17. Carrasco-Castilla J, Hernandez-Alvarez AJ, Jimenez-Martínez C, Jacinto-Hernandez C, Alaiz M, Giron-Calle J (2012) Antioxidant and metal chelating activities of Phaseolus vulgaris L. var. jamapa protein isolates, phaseolin and lectin hydrolysates. Food Chem 131(4):1157–1164CrossRefGoogle Scholar
  18. Carter AA, Gomes T, Camacho X, Juurlink DN, Shah BR, Mamdani MM (2013) Risk of incident diabetes among patients treated with stains: population based study. Br Med J 346:2610CrossRefGoogle Scholar
  19. Castellano P, Aristoy MC, Sentandreu MÁ, Vignolo G, Toldrá F (2013) Peptides with angiotensin I converting enzyme (ACE) inhibitory activity generated from porcine skeletal muscle proteins by the action of meat-borne lactobacillus. J Proteomics 89:183–190CrossRefPubMedGoogle Scholar
  20. Chahardoli M, Fazeli A, Niazi A, Ghabooli M (2018) Recombinant expression of LFchimera antimicrobial Peptide in a plant-based expression systems and its antimicrobial activity against clinical and phytopathogenic bacteria. Biotechnol Biotechnol Equip 32:714–723CrossRefGoogle Scholar
  21. Chaudhari DD, Singh R, Mallappa RH, Rokana N, Kaushik JK, Bajaj R, Batish VK, Grover S (2017) Evaluation of casein and whey protein hydrolysates as well as milk fermentates from Lactobacillus helveticus for expression of gut hormones. Indian J Med Res 146:409–419PubMedPubMedCentralGoogle Scholar
  22. Chaudhury A, Duvoor C, Dendi VSR, Kraleti S, Chada A, Ravilla R, Marco A, Shekhawat NS, Montales MT, Kuriakose K (2017) Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol 8:6CrossRefGoogle Scholar
  23. Cheison SC, Wang Z, Xu SY (2007) Preparation of whey protein hydrolysates using a single-and two stage enzymatic membrane reactor by multivariate data analysis. J Agric Food Chem 55:3896–3904CrossRefPubMedGoogle Scholar
  24. Chen HM, Muramoto K, Yamauchi F (1995) Structural analysis of antioxidative peptides from soybean bet-conglycinin. J Agric Food Chem 43(3):574–578CrossRefGoogle Scholar
  25. Chen HM, Muramoto K, Yamauchi F, Nokihara K (1996) Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digested of a soybean protein. J Agric Food Chem 44(9):2619–2623CrossRefGoogle Scholar
  26. Chetwynd AJ, Guggenheim EJ, Briffa SM, Thorn JA, Lynch I, Valsami-Jones E (2018) Current application of capillary electrophoresis in nanomaterial characterisation and its potentials to characterise the protein and small molecules corona. Nanomaterials 8(2):99CrossRefPubMedCentralGoogle Scholar
  27. Daliri EBM, Lee BH, Oh DH (2016) Current perspectives on antihypertensive probiotics. Probiotics Antimicrob Proteins. CrossRefGoogle Scholar
  28. Daliri EB, Deog HO, Byong HL (2017) Bioactive peptides. Foods 6:32CrossRefPubMedCentralGoogle Scholar
  29. De Brito RCF, Cardoso JMDO, Reis LES, Vieira JF, Mathias FAS, Roatt BM, Aguiar-Soares RDDO, Ruiz JC, Resende DDM, Reis AB (2018) Peptide vaccines for leishmaniasis. Front Immunol 9:1043CrossRefPubMedPubMedCentralGoogle Scholar
  30. De Mejia EG, Dia VP (2010) The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer Metastasis Rev 29:511–528CrossRefPubMedGoogle Scholar
  31. Deacon CF (2018) Peptide degradation and the role of DPP-4 inhibitors in the treatment of type 2 diabetes. Peptides 100:150–157CrossRefPubMedGoogle Scholar
  32. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI (2015) Type 2 diabetes mellitus. Nat Rev Dis Primers 1:15019CrossRefPubMedGoogle Scholar
  33. Duan X, Ocen D, Wu F, Li M, Yang N, Xu J (2014) Purification and characterization of a natural antioxidant peptide from fertilized eggs. Food Res Int 56:18–24CrossRefGoogle Scholar
  34. Dujic T, Causevic A, Bego T, Malenica M, Velija-Asimi Z, Pearson E, Semiz S (2015) Organic cation transporter 1 variant and gastrointestinal side effects of metformin in patients with type 2 diabetes. Diabet Med 4:511–514Google Scholar
  35. Egger L, Ménard O, Baumanna C, Duerra D, Schlegel P, Stoll P, Vergèresa G, Dupont D, Portmanna R (2017) Digestion of milk proteins: comparing static and dynamic in vitro digestion systems with in vivo data. Food Res Int 12:049Google Scholar
  36. Ennaas N, Hammami R, Beaulieu L, Fliss I (2015) Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products. Biochem Biophys Res Commun 462:195–200CrossRefPubMedGoogle Scholar
  37. Erdmann K, Cheung BWY, Schröder H (2008) The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem 19:643–654CrossRefPubMedGoogle Scholar
  38. Espita PJP, De Fátima NFS, Coimbra JSR, Andrade NJ, Cruz RS, Medeiros EAA (2009) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464CrossRefGoogle Scholar
  39. Espitia PJP, Soares NF, Coimbra JS, Jose de Andrade N, Cruz NARS, Medeiros EAA (2012) Bioactive peptides: synthesis, properties, and applications in the packaging and preservation of food. Compr Rev Food Sci Food Saf 2012:11Google Scholar
  40. Fernández-Tomé S, Sanchón J, Recio I, Hernández-Ledesma B (2017) Transepithelial transport of lunasin and derived peptides: inhibitory effects on the gastrointestinal cancer cells viability. J Food Compost Anal 68:101–110CrossRefGoogle Scholar
  41. FitzGerald RJ, Murray BA, Walsh DJ (2004) Hypotensive peptides from milk proteins. J Nutrition 134(4):980S–988SCrossRefGoogle Scholar
  42. García-Mora P, Martín-Martínez M, Bonache MA, González-Múniz R, Peñas E, Frias J, Martinez-Villaluenga C (2017) Identification, functional gastrointestinal stability and molecular docking studies of Lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chem 221:464–472CrossRefPubMedGoogle Scholar
  43. García-Tejedor A, Castelló-Ruiz M, Gimeno-Alcañíz JV, Manzanares P, Salom JB (2015) In vivo antihypertensive mechanism of lactoferrin-derived peptides: reversion of angiotensin-I and angiotensin II-induced hypertension in wister rats. J funct foods 15:294–300CrossRefGoogle Scholar
  44. Girgih AT, He R, Malomo S, Offengenden M, Wu J, Aluko RE (2014) Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. J Funct Foods 6:384–394CrossRefGoogle Scholar
  45. Gomez-Ruiz JA, Ramos M, Recio I (2004) Angiotensin converting enzyme-inhibitory activity of peptide isolated from Manchego cheese. Stability under simulated gastrointestinal digestion. Int Dairy J 14:1075CrossRefGoogle Scholar
  46. González-Montoya M, Hernández-Ledesma B, Mora-Escobedo R, Martínez-Villaluenga C (2018) Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, α-amylase, and α-glucosidase enzymes. Int J Mol Sci 19:2883CrossRefPubMedCentralGoogle Scholar
  47. Guinane CM, Kent RM, Norberg S, O’Connor PM, Cotter PD, Hill C, Fitzgerald GF, Stanton C, Ross RP (2015) Generation of the antimicrobial peptide caseicin a from casein by hydrolysis with thermolysin enzymes. Int Dairy J 49:1–7CrossRefGoogle Scholar
  48. Gul W, Farooq N, Anees D, Khan U, Rehan F (2015) Camel milk: a boon to mankind. Int J Res Stud Biosci 3:23–29Google Scholar
  49. Guterstam P, Madani F, Hirose H, Takeuchi T, Futaki S, Andaloussi SE, Gräslund A, Langel Ü (2009) Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate. Biochim Biophys Acta 1788:2509–2517CrossRefPubMedGoogle Scholar
  50. Gutierrez K, Glanzner WG, Chemeris RO, Rigo ML, Comim FV, Bordignon V, Gonçalves PB (2016) Gonadotoxic effects of busulfan in two strains of mice. Reprod Toxicol 59:31–39CrossRefPubMedGoogle Scholar
  51. Harnedy PA, O’Keeffe MB, FitzGerald RJ (2015) Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmate. Food Chem 172:400–406CrossRefPubMedGoogle Scholar
  52. Harrison DG (1997) Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100(9):2153–2157CrossRefPubMedPubMedCentralGoogle Scholar
  53. Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91(3):7–11CrossRefGoogle Scholar
  54. Hayes M (2018) Food proteins and bioactive peptides: new and novel sources, characterisation strategies and applications. Foods 7:38CrossRefPubMedCentralGoogle Scholar
  55. He R, Alashi A, Malomo SA, Girgih AT, Chao D, Ju X (2013) Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates. Food Chem 141:153–159CrossRefPubMedGoogle Scholar
  56. Hernandez LMR, de Mejia EG (2017) Bean peptides have higher in silico binding affinities than Ezetimibe for the N-terminal domain of cholesterol receptor Niemann-Pick C1 like-1. Peptides 17:30052–30059Google Scholar
  57. Hernandez-Ledesma B, Amigo L, Ramos M, Recio I (2004) Release of angiotensin converting enzyme inhibitory peptides by simulated gastrointestinal digestion of infant formulas. Int Dairy J 14:889CrossRefGoogle Scholar
  58. Hernandez-Ledesma B, Contreras M, Recio I (2011) Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interface Sci 165:23–35CrossRefPubMedGoogle Scholar
  59. Hernandez-Ledesma B, Garcia-Nebot MJ, Fernandez-Tome S, Amigo L, Recio I (2014) Dairy protein hydrolysates: peptides for health benefits. Int Dairy J 38:82–100CrossRefGoogle Scholar
  60. Hernández-Ledesma B, Quirós A, Amigo L, Recio I (2007) Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. Int Dairy J 17:42CrossRefGoogle Scholar
  61. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of anti-microbial peptides. Biochim Biophy Acta 1778:357–385CrossRefGoogle Scholar
  62. Hu J, Xu M, Hang B, Wang L, Wang Q, Chen J, Song T, Fu D, Wang Z, Wang S (2011) Isolation and characterization of an antimicrobial peptide from bovine hemoglobin subunit. World J Microbiol Biotechnol 27:767–771CrossRefGoogle Scholar
  63. Huang SM, Chen KN, Chen YP, Hong WS, Chen MJ (2010) Immunomodulatory properties of the milk whey products obtained by enzymatic and microbial hydrolysis. Int J Food Sci Technol 45(5):1061–1067CrossRefGoogle Scholar
  64. Huang SL, Jao CL, Ho KP, Hsu KC (2012) Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates. Peptides 2012(35):114–121CrossRefGoogle Scholar
  65. Hung CC, Yang YH, Kuo PF, Hsu KC (2014) Protein hydrolysates from tuna cooking juice inhibit cell growth and induce apoptosis of human breast cancer cell line MCF-7. J Funct Foods 11:563–570CrossRefGoogle Scholar
  66. Imig JD (2004) ACE inhibition and bradykinin-mediated renal vascular responses: EDHF involvement. Hypertension 43(3):533–535CrossRefPubMedGoogle Scholar
  67. Jeong DW, Shin DS, Ahn CW, Song IS, Lee HJ (2007) Expression of antihypertensive peptide, His-His-Leu as tandem repeats in Escherichia coli. J Microbiol Biotechnol 17:952PubMedGoogle Scholar
  68. Juillard V, Guillot A, Le Bars D, Gripon JC (1998) Specificity of milk peptide utilization by Lactococcus lactis. Appl Environ Microbiol 64:1230PubMedPubMedCentralGoogle Scholar
  69. Kamali AE, Ehsani M (2017) Antimicrobial peptides derived from milk: a review. J Food Biosci Technol 7:49–56Google Scholar
  70. Kapel R, Rahhou E, Lecouturier D, Guillochon D, Dhulster P (2006) Characterization of an antihypertensive peptide from an alfalfa white protein hydrolysate produced by a continuous enzymatic membrane reactor. Process Biochem 41:1961–1966CrossRefGoogle Scholar
  71. Katsiki N, Banach M (2012) Statin use and risk of diabetes mellitus in postmenopausal women. Clin Lipidol 7:267–270CrossRefGoogle Scholar
  72. Khan MU, Pirzadeh M, Förster CY, Shityakov S, Shariati MA (2018) Role of milk-derived antibacterial peptides in modern food biotechnology: their synthesis, applications and future perspectives. Biomolecules 8:110CrossRefPubMedCentralGoogle Scholar
  73. Korczek K, Tkaczewska J, Migdał W (2018) Antioxidant and antihypertensive protein hydrolysates in fish products—a review. Czech J Food Sci 36(3):195–207CrossRefGoogle Scholar
  74. Koyama M, Hattori S, Amano Y, Watanabe M, Nakamura K (2014) Blood pressure -lowering peptides from neo-fermented buckwheat sprouts: a new approach to estimating ACE-inhibitory activity. PLoS ONE 9:e105802CrossRefPubMedPubMedCentralGoogle Scholar
  75. Kumar D, Chatli MK, Singh R, Mehta N, Kumar P (2016) Enzymatic hydrolysis of camel milk casein and its antioxidant properties. Dairy Sci Technol l96:391–404CrossRefGoogle Scholar
  76. Kwon DY, Hong SM, Ahn IS, Kim MJ, Yang HJ, Park S (2011) Isoflavonoids and peptides from meju long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutrition 27:244–252CrossRefPubMedGoogle Scholar
  77. Lacroix IM, Chen XM, Kitts D, Li-Chan EC (2017) Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers. Funct Foods 8:701–709CrossRefGoogle Scholar
  78. Lafarga T, Hayes M (2016) Bioactive protein hydrolysates in the functional food ingredient industry: overcoming current challenges. Food Rev Int 33:217–246CrossRefGoogle Scholar
  79. Lammi C, Zanoni C, Arnoldi A (2015) IAVPGEVA, IAVPTGVA, and LPYP, three peptides from soy glycinin, modulate cholesterol metabolism in HepG2 cells through the activation of the LDLR-SREBP2 pathway. J Funct Foods 14:469–478CrossRefGoogle Scholar
  80. Lammi C, Zanoni C, Calabresi L, Arnoldi A (2016) Lupin protein exerts cholesterol-lowering effects targeting PCSK9: from clinical evidences to elucidation of the in vitro molecular mechanism using HepG2 cells. J Funct Foods 23:230–240CrossRefGoogle Scholar
  81. Lapphanichayakool P, Sutheerawattananonda M, Limpeanchob N (2017) Hypocholesterolemic effect of sericin-derived oligopeptides in high-cholesterol fed rats. J Nat Med 71:208–215CrossRefPubMedGoogle Scholar
  82. Lassegue B, Griendling KK (2004) Reactive oxygen species in hypertension; an update-review article. Am J Hypertens 17(9):852–860CrossRefPubMedGoogle Scholar
  83. Lassoued I, Mora L, Barkia A, Aristoy M, Nasr M, Toldra F (2015) Bioactive peptides identified in thorn-back ray skin’s gelatin hydrolysates by proteases from Bacillus subtilis and Bacillus amyloliquefaciens. J Proteomics 128:8–17CrossRefPubMedGoogle Scholar
  84. Lemes AC, Sala L, Ores Jda C, Braga AR, Eqea MB, Fernandes KF (2016) A review of the latest advances in encrypted bioactive peptides from protein-rich waste. Int J Mol Sci 17:950–974CrossRefPubMedCentralGoogle Scholar
  85. Li Y, Yu J (2015) Research progress in structure–activity relationship of bioactive peptides. J Med Food 18:147–156CrossRefPubMedGoogle Scholar
  86. Li GH, Le GW, Shi YH, Shrestha S (2004) Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr Res 24(7):469–486CrossRefGoogle Scholar
  87. Li P, Jia J, Fang M, Zhang L, Guo M, Xie J (2014) In vitro and in vivo ACE inhibitory of pistachio hydrolysates and in silico mechanism of identified peptide binding with ACE. Process Biochem 49(5):898–904CrossRefGoogle Scholar
  88. Li-Chan EC, Hunag SL, Jao CL, Ho KP, Hsu KC (2012) Peptides derived from atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J Agric Food Chem 60:973–978CrossRefPubMedGoogle Scholar
  89. Lignitto L, Cavatorta V, Balzan S, Gabai G, Galaverna G, Novelli E (2010) Angiotensin-converting enzyme inhibitory activity of water-soluble extracts of Asiago d’allevo cheese. Int Dairy J 20:11CrossRefGoogle Scholar
  90. Lin S, Liang R, Xue P, Zhang S, Liu Z, Dong X (2017) Antioxidant activity improvement of identified Pine nut peptides by pulsed electric field (PEF) and the mechanism exploration. LWT-Food Sci Technol 75:366–372CrossRefGoogle Scholar
  91. Lin K, Zhang L, Han X, Xin L, Meng Z, Gong P, Cheng D (2018) Yak milk casein as potential precursor of angiotensin-I-converting enzyme inhibitory peptides based on in silico proteolysis. Food Chem 254:340–347CrossRefPubMedGoogle Scholar
  92. Liu D, Sun HY, Zhang LJ, Li SM (2007) High-level expression of milk-derived antihypertensive peptide in Escherichia coli and its bioactivity. J Agric Food Chem 55:5109CrossRefPubMedGoogle Scholar
  93. Lv GS, Huo GC, Fu XY (2003) Expression of milk derived antihypertensive peptide in Escherichia coli. J Dairy Sci 86:1927CrossRefPubMedGoogle Scholar
  94. Mada SB, Reddi S, Kumar N, Kumar R, Kapila S, Kapila R, Trivedi R, Karvande A, Ahmad N (2017) Antioxidative peptide from milk exhibits antiosteopenic effects through inhibition of oxidative damage and bone-resorbing cytokines in ovariectomized rats. Nutrition 43–44:21–31CrossRefPubMedGoogle Scholar
  95. Mada SB, Reddi S, Kumar N, Vij R, Yadav R, Kapila S, Kapila R (2018) Casein-derived antioxidative peptide prevents oxidative stress-induced dysfunction in osteoblast cells. PharmaNutrition 6:169–179CrossRefGoogle Scholar
  96. Mancini GJ, Baker S, Bergeron J, Fitchett D, Frohlich J, Genest J, Gupta M, Hegele RA, Ng D, Pearson GJ (2016) Diagnosis, prevention, and management of stain adverse effects and intolerance: Canadian consensus working group update. Can J Cardiol 32:S35–S65CrossRefPubMedGoogle Scholar
  97. Mansour SC, Pena OM, Hancock RE (2014) Host defense peptides: front-line immunomodulators. Trends Immunol 35:443–450CrossRefPubMedGoogle Scholar
  98. Marques MR, Freitas RAMS, Carlos ACC, Siguemoto ÉS, Fontanari GG, Arêas JA (2015) Peptides from cowpea present antioxidant activity, inhibit cholesterol synthesis and its solubilisation into micelles. Food Chem 168:288–293CrossRefPubMedGoogle Scholar
  99. Masuyer G, Schwager SLU, Sturrock ED, Isaac RE, Acharya KR (2012) Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Sci Rep 2:717CrossRefPubMedPubMedCentralGoogle Scholar
  100. McClean S, Beggs LB, Welch RW (2014) Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogue. Food Chem 146:443–447CrossRefPubMedGoogle Scholar
  101. Meier JJ, Nauck MA (2014) Risk of pancreatitis in patients treated with incretin-based therapies. Diabetologia 57:1320–1324CrossRefPubMedGoogle Scholar
  102. Memarpoor-Yazdi M, Asoodeh A, Chamani J (2012) A novel antioxidant and antimicrobial peptides from egg white lysozyme hydrolysates. J Funct Foods 4:278–286CrossRefGoogle Scholar
  103. Mirzaei M, Mirdamadi S, Ehsani MR, Aminlari M (2018) Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: purification and molecular docking. J Food Drug Anal 26:696–705CrossRefPubMedGoogle Scholar
  104. Mitra S, Goyal T, Mehta JL (2011) Oxidized LDL, LOX-1 and atherosclerosis. Cardiovasc Drug Ther 25(5):419–429CrossRefGoogle Scholar
  105. Mohanty DP, Mohapatra S, Misra S, Sahu PS (2016) Milk derived bioactive peptides and their impact on human health—a review. Saudi J Biol Sci 23(5):577–583CrossRefPubMedGoogle Scholar
  106. Mojica L, de Mejia EG, Granados-Silvestre MÁ, Menjivar M (2017) Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches. J Funct Foods 31:274–286CrossRefGoogle Scholar
  107. Mora L, Gallego M, Reig M, Toldrá F (2017) Challenges in the quantitation of naturally generated bioactive peptides in processed meats. Trends Food Sci Technol 69:306–314CrossRefGoogle Scholar
  108. Mudgil P, Kamal H, Yuen GC, Maqsood S (2018) Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chem 259:46–54CrossRefPubMedGoogle Scholar
  109. Mulvihill EE (2018) Dipeptidyl peptidase inhibitor therapy in type 2 diabetes: control of the incretin axis and regulation of postprandial glucose and lipid metabolism. Peptides 100:158–164CrossRefPubMedGoogle Scholar
  110. Murray BA, FitzGerald RJ (2007) Angiotensin converting enzyme inhibitory peptides derived from food protein: biochemistry, bioactivity and production. Cur Pharm Des 13:773–791CrossRefGoogle Scholar
  111. Nagaoka S, Futamura Y, Miwa K, Awano T, Yamauchi K, Kanamaru Y (2001) Identification of novel hypocholesterolemic peptides derived from bovine milk β-lactoglobulin. Biochem Biophys Res Commun 281:11–17CrossRefPubMedGoogle Scholar
  112. Nakamura Y, Yamamoto N, Sakai K, Takano T (1995) Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors of angiotensin-I-converting enzyme. J Dairy Sci 78:1253–1257CrossRefPubMedGoogle Scholar
  113. Nawaz KAA, David SM, Murugesh E, Thandeeswaran M, GopikrishnanKiran K, Mahendran R et al (2017) Identification and in silico characterization of a novel peptide inhibitor of angiotensin converting enzyme from pigeon pea (Cajanuscajan). Phytomedicine 09:013Google Scholar
  114. Nimalaratne C, Bandara N, Wu J (2015) Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white. Food Chem 188:467–472CrossRefPubMedGoogle Scholar
  115. Nongonierma AB, FitzGerald RJ (2015) Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis. Food Chem 145:845–852CrossRefGoogle Scholar
  116. Nongonierma AB, Paolella S, Mudgil P, Maqsood S, FitzGerald RJ (2018) Identification of novel dipeptidylpeptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chem 244:340–348CrossRefPubMedGoogle Scholar
  117. Nongonierma AB, Cadamuro C, Le Gouic A, Mudgil P, Maqsood S, FitzGerald RJ (2019) Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chem 279:70–79CrossRefPubMedGoogle Scholar
  118. Ondetti MA, Cushman DW (1984) Angiotensin-converting enzyme inhibitors: biochemical properties and biological actions. CRC Crit Rev Biochem 16:381–411CrossRefPubMedGoogle Scholar
  119. Oun R, Plumb J, Rowan E, Wheate N (2013) Encapsulation of cisplatin by cucurbituril decreases the neurotoxic and cardiotoxic side effects of cisplatin. Toxicol Lett 221:S92CrossRefGoogle Scholar
  120. Pachaiappan R, Tamboli E, Acharya A, Su C, Gopinath SCB, Chen Y, Velusamy P (2018) Separation and identification of bioactive peptides from stem of Tinospora cordifolia (Willd) Miers. PLoS ONE 13(3):e0193717CrossRefPubMedPubMedCentralGoogle Scholar
  121. Palaniswamy M, Angayarkanni J, Nandhini B (2012) Angiotensin converting enzyme inhibitory activity and antioxidant properties of goat milk hydrolysates. Int J Pharm Pharm Sci 4:367–370Google Scholar
  122. Panth N, Paudel KR, Parajuli K (2016) Reactive oxygen species: a key hallmark of cardiovascular disease—a review. Adv Med 2016(9152732):12Google Scholar
  123. Park CJ, Lee JH, Hong SS, Lee HS, Kim SC (1998) High-level expression of the angiotensin-converting enzyme inhibiting peptide, YG-1, as tandem multimers in Escherichia coli. Appl Microbiol Biotechnol 50:71CrossRefPubMedGoogle Scholar
  124. Paudel KR, Lee UW, Kim DW (2016) Chungtaejeon, a Korean fermented tea, prevents the risk of atherosclerosis in rats fed a high-fat atherogenic diet. J Integr Med 14(2):134–142CrossRefPubMedGoogle Scholar
  125. Pellegrini A, Dettling C, Thomas U, Hunziker P (2001) Isolation and characterization of four bactericidal domains in the bovine b-lactoglobulin. Biochem Biophys Acta 1526:131–140CrossRefPubMedGoogle Scholar
  126. Perego S, Cosentino S, Fiorilli A, Tettamanti G, Ferraretto A (2012) Casein phosphopeptides modulate proliferation and apoptosis in HT-29 cell line through their interaction with voltage-operated L-type calcium uptake and apoptosis in Caco2 cells through their interaction with the TRPV6 calcium channel. J Funct Foods 5:847–857CrossRefGoogle Scholar
  127. Pihlanto A (2006) Antioxidative peptides derived from milk proteins. Int Dairy J 16:1306–1314CrossRefGoogle Scholar
  128. Pina AS, Batalha IL, Roque ACA (2014) Affinity Tags in Protein Purification and Peptide Enrichment: An Overview. Chapter 14, Methods in molecular biology. Humana Press, Clifton. CrossRefGoogle Scholar
  129. Piotto SP, Sessa L, Concilio S, Iannelli P (2012) Yadamp: yet another database of antimicrobial peptides. Int J Antimicrob Agents 39:346–351CrossRefPubMedGoogle Scholar
  130. Polona J, Katja I, Tune W, Margret G, Annette A, Rosa J, Hordur K, Ingrid U (2017) Bioactivity of cod and chicken protein hydrolysates before and after in vitro Gastrointestinal Digestion. Food Technol Biotech 55(3):360–367Google Scholar
  131. Qian ZJ, Jung WK, Kim SK (2008) Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana shaw. Bioresour Technol 99(6):1690–1698CrossRefPubMedGoogle Scholar
  132. Quirós A, Ramos M, Muguerza B, Delgado MA, Miguel M, Aleixandre A et al (2007) Identification of Novel antihypertensive peptides in milk fermented with Enterococcus faecalis. Int Dairy J 17:33–41CrossRefGoogle Scholar
  133. Reddi S, Kumar N, Vij R, Mada SB, Kapila S, Kapila R (2016) Akt drives buffalo casein derived novel peptide mediated osteoblast differentiation. J Nutr Biochem 38:134–144CrossRefPubMedGoogle Scholar
  134. Roblet C, Akhtar MJ, Mikhaylin S, Pilon G, Gill T, Marette A, Bazinet L (2016) Enhancement of glucose uptake in muscular cell by peptide fractions separated by electrodialysis with filtration membrane from Salmon frame protein hydrolysate. J Funct Foods 22:337–346CrossRefGoogle Scholar
  135. Rodriguez-Figueroa JC, Gonzalez-Cordova AF, Torres-Llanez MJ, Garcia HS, Vallejo-Cordoba B (2012) Novel angiotensin-I-enzyme inhibitory peptides produced in fermented milk by specific wild Lactococcus lactis strains. J Dairy Sci 95:5536–5543CrossRefPubMedGoogle Scholar
  136. Sanchón J, Fernández-Tomé S, Miralles B, Hernández-Ledesma B, Tomé D, Gaudichon C et al (2018) Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation. Food Chem 239:486–494CrossRefPubMedGoogle Scholar
  137. Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31:1949–1956CrossRefPubMedGoogle Scholar
  138. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367CrossRefPubMedPubMedCentralGoogle Scholar
  139. Schrimpf A, Hempel F, Li A, Linne U, Maier UG, Reetz MT, Geyer A (2018) Hinge-type dimerization of proteins by a tetracysteine peptide of high pairing specificity. Biochemistry 57:3658–3665CrossRefPubMedGoogle Scholar
  140. Shah P, Hsiao FSH, Ho YH, Chen CS (2016) The proteome targets of intracellular targeting antimicrobial peptides. Proteomics 16:1225–1237CrossRefPubMedGoogle Scholar
  141. Shanmugam VP, Kapila S, Sonfack TK, Kapila R (2015) Antioxidative peptide derived from enzymatic digestion of Buffalo casein. Int Dairy J 42:1–5CrossRefGoogle Scholar
  142. Sharma S, Singh R, Rana S (2011) Bioactive peptides: a review. Int J Bioautomation 15:223–250Google Scholar
  143. Shimizu M (2004) Food-derived peptides and intestinal functions. BioFactors 21:43CrossRefPubMedGoogle Scholar
  144. Silveira ST, Martínez-Maqueda D, Recio I, Hernández-Ledesma B (2013) Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin. Food Chem 141:1072–1077CrossRefPubMedGoogle Scholar
  145. Siow HL, Choi SB, Gan CY (2016) Structure–activity studies of protease activating, lipase inhibiting, bile acid binding and cholesterol-lowering effects of pre-screened Cumin seed bioactive peptides. J Funct Foods 27:600–611CrossRefGoogle Scholar
  146. Song R, Wei RB, Luo HY, Yang ZS (2014) Isolation and identification of an antiproliferative peptide derived from heated products of peptic hydrolysates of half-fin anchovy (Setipinna taty). J Funct Foods 10:104–111CrossRefGoogle Scholar
  147. Suetsuna K, Ukeda H, Ochi H (2000) Isolation and characterization of free radical scavenging activities peptides derived from casein. J Nutr Biochem 11(3):128–131CrossRefPubMedGoogle Scholar
  148. Tang W, Zhang H, Wang L, Qian H, Qi X (2015) Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chem 168:115–123CrossRefPubMedGoogle Scholar
  149. Taniguchi M, Ochiai A, Kondo H, Fukuda S, Ishiyama Y, Saitoh E, Kato T, Tanaka T (2016) Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system. J Biosci Bioeng 121:591–598CrossRefPubMedGoogle Scholar
  150. Thong K, Gupta PS, Blann A, Ryder R (2015) The influence of age and metformin treatment status on reported gastrointestinal side effects with liraglutide treatment in type 2 diabetes. Diabetes Res Clin Pract 109:124–129CrossRefPubMedGoogle Scholar
  151. Thulé PM, Umpierrez G (2014) Sulfonylureas: a new look at old therapy. Curr Diabetes Rep 14:1–8CrossRefGoogle Scholar
  152. Tomioka H, Nakagami H, Tenma A, Saito Y, Kaga T, Kanamori T et al (2014) Novel anti-microbial peptide SR-0379 accelerates wound healing via the PI3 Kinase/Akt/mTOR pathway. PLoS ONE 9:e92597CrossRefPubMedPubMedCentralGoogle Scholar
  153. Tulipano G, Sibilia V, Caroli AM, Cocchi D (2011) Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors. Peptides 32:835–838CrossRefPubMedGoogle Scholar
  154. Uchida M, Ohshiba Y, Mogami O (2011) Novel dipeptidyl peptidase-4- inhibiting peptide derived from β-lactoglobulin. J Pharmacol Sci 117:63–66CrossRefPubMedGoogle Scholar
  155. Uenishi H, Kabuki T, Seto Y, Serizawa A, Nakajima H (2012) Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-IV)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Int Dairy J 22:24–30CrossRefGoogle Scholar
  156. Ugwu CP, Abarshi MM, Mada SB, Sanusi B, Nzelibe HC (2019) Camel and horse milk casein hydrolysates exhibit angiotensin converting enzyme inhibitory and antioxidative effects in vitro and in silico. Int J Pept Res Ther 19(4):1573–3139Google Scholar
  157. Umayaparvathi S, Meenakshi S, Vimalraj V, Arumugam M, Sivagami G, Balasubramanian T (2014) Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomed Prev Nutr 4:343–353CrossRefGoogle Scholar
  158. Van Acker T, Van Malderen SJ, Van Heerden M, McDuffie JE, Cuyckens F, Vanhaecke F (2016) High-resolution laser ablation-inductively coupled plasma-mass spectrometry imaging of cisplatin-induced nephrotoxic side effects. Anal Chim Acta 945:23–30CrossRefPubMedGoogle Scholar
  159. Vital DAL, de Mejía EG, Dia VP, Loarca-Piña G (2014) Peptides in common bean fractions inhibit human colorectal cancer cells. Food Chem 157:347–355CrossRefGoogle Scholar
  160. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2016) CAMPR3: a database on sequences, structures antimicrobial peptides. Nucleic Acids Res 44:D1094–D1097CrossRefPubMedGoogle Scholar
  161. Wang Z, Zhang X (2017) Isolation and identification of anti-proliferative peptides from spirulina platensis using three-step hydrolysis. J Agric Food Sci 97:918–922CrossRefGoogle Scholar
  162. Wang JR, Teng D, Tian ZG (2008) Preparation and mechanism of functional antioxidant peptides. Nat Prod Res Dev 20:371–375Google Scholar
  163. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093CrossRefPubMedGoogle Scholar
  164. Wang X, Chen H, Fu X, Li S, Wei J (2017) A novel antioxidant and ace inhibitory peptide from rice bran protein: biochemical characterization and molecular docking study. LWT-Food Sci Technol 75:93–99CrossRefGoogle Scholar
  165. Wang J, Liao W, Nimalaratne C, Chakrabarti S, Wu J (2018) Purification and characterization of antioxidant peptides from cooked eggs using a dynamic in vitro gastrointestinal model in vascular smooth muscle A7r5 cells. Nat Partn J Sci Food 2:7Google Scholar
  166. Wu Q, Jia J, Yan H, Du J, Gui Z (2015) A novel angiotensin-capital I, Ukrainian converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: biochemical characterization and molecular docking study. Peptides 68:17–24CrossRefPubMedGoogle Scholar
  167. Xu X, Gao Y (2015) Purification and identification of angiotensin I-converting enzyme-inhibitory peptides from apalbumin 2 during simulated gastrointestinal digestion. J Agric Food Sci 95:906–914CrossRefGoogle Scholar
  168. Xue Z, Wen H, Zhai L, Yu Y, Li Y, Yu W, Cheng A, Wang C, Kou X (2015) Antioxidant activity and anti-proliferative effect of a bioactive peptide from chickpea (Cicer arietinum L.). Food Res Int 77:75–81CrossRefGoogle Scholar
  169. Yahya MA, Alhaj OA, Al-Khalifa AS (2017) Antihypertensive effect of fermented skim camel (Camelus dromedaries) milk on spontaneously hypertensive rats. Nutr Hosp 34(2):416–421CrossRefPubMedGoogle Scholar
  170. Yamauchi R, Ohinata K, Yoshikawa M (2003) β-Lactotensin and neurotensin rapidly reduce serum cholesterol via NT2 receptor. Peptides 24:1955–1961CrossRefPubMedGoogle Scholar
  171. Yigzaw Y, Hinckley P, Hewig A, Vedantham G (2009) Ion exchange chromatography of proteins and clearance of aggregates. Curr Pharm Biotechnol 10:421–426CrossRefPubMedGoogle Scholar
  172. Zhang H, Yokoyama WH, Zhang H (2012) Concentration-dependent displacement of cholesterol in micelles by hydrophobic rice bran protein hydrolysates. J Agric Food Sci 92:1395–1401CrossRefGoogle Scholar
  173. Zhang Y, Chen R, Ma H, Chen S (2015) Isolation and identification of dipeptidyl peptidase IV-inhibitory peptides from trypsin/chymotrypsin-treated goat milk casein hydrolysates by 2D-TLC and LC-MS/MS. J Agric Food Chem 63:8819–8828CrossRefPubMedGoogle Scholar
  174. Zhang Y, Chen R, Chen X, Zeng Z, Ma H, Chen S (2016) Dipeptidyl peptidase IV-inhibitory peptides derived from Silver carp (Hypophthalmichthys molitrix val.) proteins. J Agric Food Chem 64:831–839CrossRefPubMedGoogle Scholar
  175. Zhang F, Cui X, Fu Y, Zhang J, Zhou Y, Sun Y, Wang X, Li Y, Liu Q, Chen T (2017) Antimicrobial activity and mechanism of human milk-sourced peptide casein. Biochem Biophys Res Commun 485:698–704CrossRefPubMedGoogle Scholar
  176. Zhang G, Zheng S, Feng Y, Shen G, Xiong S, Du H (2018) Changes in nutrient profile and protein and antioxidant activities of different fish soups, before and after simulated gastrointestinal digestion. Molecules 23:1965CrossRefPubMedCentralGoogle Scholar
  177. Zheng Q, Qiu D, Liu X, Zhang L, Cai S, Zhang X (2015) Antiproliferative effect of dendrobium catenatum lindley polypeptides against human liver, gastric and breast cancer cell lines. Food Funct 6:1489–1495CrossRefPubMedGoogle Scholar
  178. Zhu YH, Liu R, Wu H, Wang LC (2012) Progress of structure-activity relationship of bioactive peptides. China J Trad Chin Med Pharm 27:2625–2628Google Scholar
  179. Zou T, He T, Li H, Tang H, Xia E (2016) The structure–activity relationship of the of the antioxidant peptides from natural proteins. Molecules 21:72CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Sanusi Bello Mada
    • 1
    Email author
  • Chizoba Paul Ugwu
    • 1
  • Muawiyya Musa Abarshi
    • 1
  1. 1.Department of BiochemistryAhmadu Bello UniversityZariaNigeria

Personalised recommendations