Systematic Identification and Comparative Analysis of Human Cartilage-Derived Self-peptides Presented Differently by Ankylosing Spondylitis (AS)-Associated HLA-B*27:05 and Non-AS-associated HLA-B*27:09

  • Chang Ge
  • Wenzhi ZhangEmail author
  • Rui He
  • Haiping Cai


The human leukocyte antigen B27 (HLA-B27) gene has been observed to significantly increase the risk of developing ankylosing spondylitis (AS). The HLA-B27 allele B*27:05, a genetic ancestor of all other HLA-B27 alleles, is strongly associated with AS, whereas its close relative B*27:09 does not predispose for AS, although they differ by only a single residue (D116H substitution). In the present study, an integrative biology strategy that combines in silico calculations with in vitro assays is described to perform quantitative sequence-activity model (QSAM)-based high-throughput virtual screening, molecular dynamics/energetics-based large-scale mutagenesis analysis and FACS-based HLA stabilization assay against 28,244 9-mer self-peptides derived from 17 human cartilage proteins as the antigen candidates of HLA-B27. It is revealed that the D116H mutation, which brings B*27:05 to B*27:09, does not substantially shift the peptide binding profile of HLA-B27, suggesting that the B*27:05 and B*27:09 share a similar peptide repertoire. However, few self-peptides that bind differently to B*27:05 and B*27:09 are identified; their sequences are primarily differed by C-terminus (but basically consistent in N-terminus and middle region). HLA stabilization assays substantiate that three identified self-peptides, 2515KRSSRHPRR2523 (Aggrecan), 200TRSVSHLRK208 (Annexin) and 131EKAFSPLRK139 (Biglycan), exhibit high affinity to B*27:05 (BL50 = 76.3, 28.5 and 8.6 nM, respectively) and strong selectivity for B*27:05 over B*27:09 (8.9-fold, 4.3-fold and 12.7-fold, respectively), which are highly promising as the potential candidates involved in AS elicitation.


Ankylosing spondylitis HLA-B27 B*27:0 B*27:09 Cartilage protein Self-peptide 



This study was funded by the Anhui Provincial Hospital Affiliated to Anhui Medical University.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Atagunduz P, Appel H, Kuon W, Wu P, Thiel A, Kloetzel PM, Sieper J (2005) HLA-B27-restricted CD8+ T cell response to cartilage-derived self peptides in ankylosing spondylitis. Arthritis Rheum 52:892–901CrossRefGoogle Scholar
  2. Bai Z, Hou S, Zhang S, Li Z, Zhou P (2017) Targeting self-binding peptides as a novel strategy to regulate protein activity and function: a case study on the proto-oncogene tyrosine protein kinase c-Src. J Chem Inf Model 57:835–845CrossRefGoogle Scholar
  3. Barriga A, Lorente E, Johnstone C, Mir C, del Val M, López D (2014) A common minimal motif for the ligands of HLA-B*27 class I molecules. PLoS ONE 9:e106772CrossRefGoogle Scholar
  4. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  5. Bowness P (2015) HLA-B27. Annu Rev Immunol 33:29–48CrossRefGoogle Scholar
  6. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  7. Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL, Taylor A, Calin A, Wordsworth P (1997) Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum 40:1823–1828CrossRefGoogle Scholar
  8. Brown MA, Wordsworth BP, Reveille JD (2002) Genetics of ankylosing spondylitis. Clin Exp Rheumatol 20:S43–S49Google Scholar
  9. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688CrossRefGoogle Scholar
  10. Cauli A, Dessole G, Fiorillo MT, Vacca A, Mameli A, Bitti P, Passiu G, Sorrentino R, Mathieu A (2002) Increased level of HLA-B27 expression in ankylosing spondylitis patients compared with healthy HLA-B27-positive subjects: a possible further susceptibility factor for the development of disease. Rheumatology 41:1375–1379CrossRefGoogle Scholar
  11. Cheng X, Mei Y, Ji X, Xue Q, Chen D (2016) Molecular mechanism of the susceptibility difference between HLA-B*27:02/04/05 and HLA-B*27:06/09 to ankylosing spondylitis: substitution analysis, MD simulation, QSAR modelling, and in vitro assay. SAR QSAR Environ Res 27:409–425CrossRefGoogle Scholar
  12. Chipman HA, George EI, McCulloch RE (1998) Bayesian CART model search. J Am Stat Assoc 93:935–948CrossRefGoogle Scholar
  13. Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:273–297Google Scholar
  14. Doytchinova IA, Walshe VA, Jones NA, Gloster SE, Borrow P, Flower DR (2004) Coupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes. J Immunol 172:7495–7502CrossRefGoogle Scholar
  15. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012CrossRefGoogle Scholar
  16. Fiorillo MT, Greco G, Maragno M, Potolicchio I, Monizio A, Dupuis ML, Sorrentino R (1998) The naturally occurring polymorphism Asp116– > His116, differentiating the ankylosing spondylitis-associated HLA-B*2705 from the non-associated HLA-B*2709 subtype, influences peptide-specific CD8 T cell recognition. Eur J Immunol 28:2508–2516CrossRefGoogle Scholar
  17. Fruci D, Rovero P, Falasca G, Chersi A, Sorrentino R, Butler R, Tanigaki N, Tosi R (1993) Anchor residue motifs of HLA class-I-binding peptides analyzed by the direct binding of synthetic peptides to HLA class I α chains. Hum Immunol 38:187–192CrossRefGoogle Scholar
  18. Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD (1990) Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2 m: an animal model of HLA-B27-associated human disorders. Cell 63:1099–1112CrossRefGoogle Scholar
  19. Harndahl M, Rasmussen M, Roder G, Dalgaard Pedersen I, Sørensen M, Nielsen M, Buus S (2012) Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur J Immunol 42:1405–1416CrossRefGoogle Scholar
  20. He Y, He X (2016) Molecular design and genetic optimization of antimicrobial peptides containing unnatural amino acids against antibiotic-resistant bacterial infections. Biopolymers 106:746–756CrossRefGoogle Scholar
  21. Hein Z, Borchert B, Abualrous ET, Springer S (2018) Distinct mechanisms survey the structural integrity of HLA-B*27:05 intracellularly and at the surface. PLoS ONE 13:e0200811CrossRefGoogle Scholar
  22. Hemmateenejad B, Yousefinejad S, Mehdipour AR (2011) Novel amino acids indices based on quantum topological molecular similarity and their application to QSAR study of peptides. Amino Acids 40:1169–1183CrossRefGoogle Scholar
  23. Hou T, Zhang W, Case DA, Wang W (2008) Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain. J Mol Biol 376:1201–1214CrossRefGoogle Scholar
  24. Kawashima S, Kanehisa M (2000) AAindex: amino acid index database. Nucleic Acids Res 28:374CrossRefGoogle Scholar
  25. Krivov GG, Shapovalov MV, Dunbrack RL (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77:778–795CrossRefGoogle Scholar
  26. Kuhne M, Erben U, Schulze-Tanzil G, Köhler D, Wu P, Richter FJ, John T, Radbruch A, Sieper J, Appel H (2009) HLA-B27-restricted antigen presentation by human chondrocytes to CD8+ T cells: potential contribution to local immunopathologic processes in ankylosing spondylitis. Arthritis Rheum 60:1635–1646CrossRefGoogle Scholar
  27. Li Z, Yan F, Miao Q, Meng Y, Wen L, Jiang Q, Zhou P (2019) Self-binding peptides: binding-upon-folding versus folding-upon-binding. J Theor Biol 469:25–34CrossRefGoogle Scholar
  28. Liang G, Yang L, Chen Z, Mei H, Shu M, Li Z (2009) A set of new amino acid descriptors applied in prediction of MHC class I binding peptides. Eur J Med Chem 44:1144–1154CrossRefGoogle Scholar
  29. Lin H, Gong YZ (2017) Association of HLA-B27 with ankylosing spondylitis and clinical features of the HLA-B27-associated ankylosing spondylitis: a meta-analysis. Rheumatol Int 37:1267–1280CrossRefGoogle Scholar
  30. Malaviya AP, Ostor AJ (2011) Early diagnosis crucial in ankylosing spondylitis. Practitioner 255:21–24Google Scholar
  31. Martín-Esteban A, Sanz-Bravo A, Guasp P, Barnea E, Admon A, López de Castro JA (2017) Separate effects of the ankylosing spondylitis associated ERAP1 and ERAP2 aminopeptidases determine the influence of their combined phenotype on the HLA-B*27 peptidome. J Autoimmun 79:28–38CrossRefGoogle Scholar
  32. Obrezanova O, Csanyi G, Gola JM, Segall MD (2007) Gaussian processes: a method for automatic QSAR modeling of ADME properties. J Chem Inf Model 47:1847–1857CrossRefGoogle Scholar
  33. Ochoa R, Soler MA, Laio A, Cossio P (2018) Assessing the capability of in silico mutation protocols for predicting the finite temperature conformation of amino acids. Phys Chem Chem Phys 20:25901–25909CrossRefGoogle Scholar
  34. Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, CambridgeGoogle Scholar
  35. Reveille JD (2006) Major histocompatibility genes and ankylosing spondylitis. Best Pract Res Clin Rheumatol 20:601–609CrossRefGoogle Scholar
  36. Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S (1998) New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 41:2481–2491CrossRefGoogle Scholar
  37. Sanz-Bravo A, Alvarez-Navarro C, Martín-Esteban A, Barnea E, Admon A, López de Castro JA (2018) Ranking the contribution of ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 1 (ERAP1) polymorphisms to shaping the HLA-B*27 peptidome. Mol Cell Proteomics 17:1308–1323CrossRefGoogle Scholar
  38. Schittenhelm RB, Sian TC, Wilmann PG, Dudek NL, Purcell AW (2015) Revisiting the arthritogenic peptide theory: quantitative not qualitative changes in the peptide repertoire of HLA-B27 allotypes. Arthritis Rheumatol 67:702–713CrossRefGoogle Scholar
  39. Sheehan NJ (2010) HLA-B27: what’s new? Rheumatology 49:621–631CrossRefGoogle Scholar
  40. Sieper J, Braun J, Rudwaleit M, Boonen A, Zink A (2002) Ankylosing spondylitis: an overview. Ann Rheum Dis 61:8–18CrossRefGoogle Scholar
  41. Taurog JD (2007) The mystery of HLA-B27: if it isn’t one thing, it’s another. Arthritis Rheum 56:2478–2481CrossRefGoogle Scholar
  42. Taurog JD, Maika SD, Satumtira N, Dorris ML, McLean IL, Yanagisawa H, Sayad A, Stagg AJ, Fox GM, Lê O’Brien A, Rehman M, Zhou M, Weiner AL, Splawski JB, Richardson JA, Hammer RE (1999) Inflammatory disease in HLA-B27 transgenic rats. Immunol Rev 169:209–223CrossRefGoogle Scholar
  43. Tian F, Zhou P, Li Z (2007) T-scale as a novel vector of topological descriptors for amino acids and its application in QSARs of peptides. J Mol Struct 830:106–115CrossRefGoogle Scholar
  44. Walshe VA, Hattotuwagama CK, Doytchinova IA, Wong M, Macdonald IK, Mulder A, Claas FH, Pellegrino P, Turner J, Williams I, Turnbull EL, Borrow P, Flower DR (2009) Integrating in silico and in vitro analysis of peptide binding affinity to HLA-Cw*0102: a bioinformatic approach to the prediction of new epitopes. PLoS ONE 4:e8095CrossRefGoogle Scholar
  45. Walshe VA, Hattotuwagama CK, Doytchinova IA, Flower DR (2014) A dataset of experimental HLA-B*2705 peptide binding affinities. Dataset Pap Sci 2014:914684Google Scholar
  46. Wang J, Hou T, Xu X (2006) Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Comput Aided Drug Des 2:287–306CrossRefGoogle Scholar
  47. Wang M, Lamberth K, Harndahl M, Røder G, Stryhn A, Larsen MV, Nielsen M, Lundegaard C, Tang ST, Dziegiel MH, Rosenkvist J, Pedersen AE, Buus S, Claesson MH, Lund O (2007) CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening. Vaccine 25:2823–2831CrossRefGoogle Scholar
  48. Westen GJ, Swier RF, Cortes-Ciriano I, Wegner JK, Overington JP, Ijzerman AP, van Vlijmen HW, Bender A (2013) Benchmarking of protein descriptor sets in proteochemometric modeling (part 2): modeling performance of 13 amino acid descriptor sets. J Cheminform 5:42CrossRefGoogle Scholar
  49. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130CrossRefGoogle Scholar
  50. Yang C, Wang C, Zhang S, Huang J, Zhou P (2015a) Structural and energetic insights into the intermolecular interaction among human leukocyte antigens, clinical hypersensitive drugs and antigenic peptides. Mol Simul 41:741–751CrossRefGoogle Scholar
  51. Yang C, Zhang S, He P, Wang C, Huang J, Zhou P (2015b) Self-binding peptides: folding or binding. J Chem Inf Model 55:329–342CrossRefGoogle Scholar
  52. Yang C, Zhang S, Bai Z, Hou S, Wu D, Huang J, Zhou P (2016) A two-step binding mechanism for the self-binding peptide recognition of target domains. Mol BioSyst 12:1201–1213CrossRefGoogle Scholar
  53. Yu H, Zhou P, Deng M, Shang Z (2014) Indirect readout in protein–peptide recognition: a different story from classical biomolecular recognition. J Chem Inf Model 54:2022–2032CrossRefGoogle Scholar
  54. Zhou P, Tian F, Wu Y, Li Z, Shang Z (2008) Quantitative sequence-activity model (QSAM): applying QSAR strategy to model and predict bioactivity and function of peptides, proteins and nucleic acids. Curr Comput Aided Drug Des 4:311–321CrossRefGoogle Scholar
  55. Zhou P, Wang C, Tian F, Ren Y, Yang C, Huang J (2013a) Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity. J Comput Aided Mol Des 27:67–78CrossRefGoogle Scholar
  56. Zhou P, Yang C, Ren Y, Wang C, Tian F (2013b) What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach. Food Chem 141:2967–2973CrossRefGoogle Scholar
  57. Zhou P, Zhang S, Wang Y, Yang C, Huang J (2016) Structural modeling of HLA-B1502 peptide carbamazepine T-cell receptor complex architecture: implication for the molecular mechanism of carbamazepine-induced Stevens-Johnson syndrome toxic epidermal necrolysis. J Biomol Struct Dyn 34:1806–1817CrossRefGoogle Scholar
  58. Zhou P, Hou S, Bai Z, Li Z, Wang H, Chen Z, Meng Y (2018) Disrupting the intramolecular interaction between proto-oncogene c-Src SH3 domain and its self-binding peptide PPII with rationally designed peptide ligands. Artif Cells Nanomed Biotechnol 46:1122–1131CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of OrthopaedicsAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiChina

Personalised recommendations