Region-Based Epitope Prediction, Docking and Dynamic Studies of OMP31 as a Dominant Antigen in Human and Sheep Brucella

  • Saeideh Mohammad Hasani
  • Elyas Mohammadi
  • Mohammad Hadi SekhavatiEmail author


Brucella is an important zoonotic pathogen which causes significant commercial loss in industry and considerable disease in livestock and human. Diminishing fertility and also abortion in animal and Malta fever disease in human. In spite of some successful vaccines against animal brucellosis, no satisfactory vaccine has been produced against human brucellosis. Accordingly, OMP31 as a major immunogenic and immunodominant protein in Brucella melitensis has been used to predict substantial epitopes against human and/or sheep MHCII alleles in three different continents (America, Oceania, and Europe) through bioinformatics tools. In order to validate region-based projections, the accuracy of epitopes was assessed by Vaxijen, an online server. The structure of these peptides was predicted through PEP-FOLD server. Predicted epitopes were sifted through docking studies with relevant MHCII receptors and finally, docked complexes were evaluated by molecular dynamic simulations. According to the frequency of human and sheep alleles in different regions, “FGTVRARLG” and “YIGINAGYA” epitopes can be considered for American, Eastern European, and Asian human populations and also sheep flocks of Australia and New Zealand (Corriedale breed), United States (Polypay and Rumbouillet breeds) and France (Rambouillet breed). Besides, “AINNNWTLKSE”, “FLESKVNFH”, “VLGAETDFQG”, and YIGINAGYA can be significant in American and northern Indian human populations and also sheep of France (Suffolk and Columbia breeds), England and Scotland (Cheviot breed) and United States (Polypay breed). Eventually, “AINNNWTLKSE” and “VQAGYNWQL” might be important in American human and Britannia (Scottish Blackface breed), United States (Columbia, Rambouillet, and Polypay breeds) and French (Rambouillet breed) sheep populations.


Epitope MHCII Bioinformatics Allele frequency Dynamic simulations 



Funding was provided by Ferdowsi University of Mashhad (Grant No. 92045).

Compliance with Ethical Standards

Conflict of interest

All Authors declare that they have no conflict of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abualrous ET, Saini SK, Ramnarayan VR, Ilca FT, Zacharias M, Springer SJP o (2015) The carboxy terminus of the ligand peptide determines the stability of the MHC class I molecule H-2Kb: a combined molecular dynamics and experimental study. PLoS ONE 10(8):e0135421CrossRefGoogle Scholar
  2. Adone R, Francia M, Ciuchini FJV (2008) Evaluation of Brucella melitensis B115 as rough-phenotype vaccine against B. melitensis and B. ovis infections. Vaccine 26(38):4913–4917CrossRefGoogle Scholar
  3. Alp E, Koc RK, Durak AC, Yildiz O, Aygen B, Sumerkan B, Doganay M (2006). Doxycycline plus streptomycin versus ciprofloxacin plus rifampicin in spinal brucellosis [ISRCTN31053647]. BMC Infect Dis 6(1):72CrossRefGoogle Scholar
  4. Ariza J, Gudiol F, Pallares R, Viladrich PF, Rufi G, Corredoira J, Miravitlles MR (1992). Treatment of human brucellosis with doxycycline plus rifampin or doxycycline plus streptomycin: a randomized, double-blind study. Ann Intern Med 117(1):25–30CrossRefGoogle Scholar
  5. Berendsen HJC, Van Gunsteren WF, Barnes AJ (1984) Molecular Liquids-Dynamics and Interactions. Proceedings of the NATO Advanced Study Institute on Molecular Liquids (Reidel, Dordretch, 1984) pp. 475–500Google Scholar
  6. Berendsen HJ, van der Spoel D, van Drunen RJC p. c (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Computer Physics Commun 91(1–3), 43–56CrossRefGoogle Scholar
  7. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000). The protein data bank. Nucleic Acids Res 28(1):235–242CrossRefGoogle Scholar
  8. Blasco, J (1997). A review of the use of B. melitensis Rev 1 vaccine in adult sheep and goats. Prev Vet Med 31(3–4):275–283CrossRefGoogle Scholar
  9. Briones G, de Iannino NI, Roset M, Vigliocco A, Paulo PS, Ugalde RA, (2001) Brucella abortus cyclic β-1, 2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells. Infect Immun 69(7):4528–4535CrossRefGoogle Scholar
  10. Bussi G, Donadio D, Parrinello MJ (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101CrossRefGoogle Scholar
  11. Carvalho TF, Haddad JPA, Paixão TA, Santos RL (2016) Meta-analysis and advancement of brucellosis vaccinology. PLoS ONE 11(11):e0166582CrossRefGoogle Scholar
  12. Christopher S, Umapathy B, Ravikumar KJ (2010) Brucellosis: review on the recent trends in pathogenicity and laboratory diagnosis. J Lab Phys 2(2):55Google Scholar
  13. Cloeckaert A, Vizcaíno N, Paquet J-Y, Bowden RA, Elzer PH (2002) Major outer membrane proteins of Brucella spp.: past, present and future. Vet Microbiol 90(1–4):229–247CrossRefGoogle Scholar
  14. Collins M, Tang T, Slack R, Sintasath D, Hartzman R, Ng J, Hurley C (2000) The relative frequencies of HLA-DRB1* 01 alleles in the major US populations. Tissue Antigens 55(1):48–52CrossRefGoogle Scholar
  15. DeLano WL (2002) Pymol: an open-source molecular graphics tool. CCP4 Newslett Protein Crystallogr 40:82–92Google Scholar
  16. Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8(1):4CrossRefGoogle Scholar
  17. Dubray G, Bezard GJAVR (1980) Isolation of three protective cell-wall antigens of Brucella abortus in experimental brucellosis in mice. Ann Rech Vet 11:367–373Google Scholar
  18. Franco MP, Mulder M, Gilman RH, Smits HL (2007) Human Brucellosis. Lancet Infect Dis 7(12):775–786CrossRefGoogle Scholar
  19. Garin-Bastuji B, Blasco J-M, Grayon M, Verger J-M (1998) Brucella melitensis infection in sheep: present and future. Vet Res 29(3–4):255–274Google Scholar
  20. Gillespie JH (2004) Population genetics: a concise guide. JHU Press, BaltimoreGoogle Scholar
  21. Gupta V, Vohra J, Kumari R, Gururaj K, Vihan VJ I. J. o. A. S. (2012). Identification of Brucella isolated from goats using Pst I site polymorphism at Omp2 gene loci. Indian J Anim Sci 82(3):240Google Scholar
  22. Herrmann LM, Brown WC, Lewis GS, Knowles DPJI (2005) Identification and phylogenetic analysis of 15 MHC class II DRB1 β1 expressed alleles in a ewe–lamb flock. Immunogenetics 57(11):855–863CrossRefGoogle Scholar
  23. Karkhah A, Amani J (2016) A potent multivalent vaccine for modulation of immune system in atherosclerosis: an in silico approach. Clin Exp Vaccine Res 5(1):50–59CrossRefGoogle Scholar
  24. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9(9):646CrossRefGoogle Scholar
  25. Konnai S, Takeshima S, Tajima S, Yin S, Okada K, Onuma M, Aida Y (2003a) The influence of Ovine MHC class II DRB1 alleles on immune response in bovine leukemia virus infection. Microbiol Immunol 47(3):223–232CrossRefGoogle Scholar
  26. Konnai S, Nagaoka Y, Takeshima S, Onuma M, Aida YJ (2003b) Sequences and diversity of 17 new Ovar-DRB1 alleles from three breeds of sheep. Eur J Immunogenet 30(4):275–282CrossRefGoogle Scholar
  27. Lederman S, Yellin M, Krichevsky A, Belko J, Lee JJ, Chess L (1992) Identification of a novel surface protein on activated CD4 + T cells that induces contact-dependent B cell differentiation (help). J Exp Med 175(4):1091–1101CrossRefGoogle Scholar
  28. Lindahl E, Hess B, Van Der Spoel, D (2001). GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Exp Med 7(8):306–317Google Scholar
  29. Mack SJ, Tu B, Lazaro A, Yang R, Lancaster AK, Cao K, Ng J, Hurley CK (2009) HLA-A,-B,-C, and-DRB1 allele and haplotype frequencies distinguish Eastern European Americans from the general European American population. Tissue Antigens 73(1):17–32CrossRefGoogle Scholar
  30. Mohammadi E, Dashty S (2019) Epitope prediction, modeling, and docking studies for H3L protein as an agent of smallpox. BioTechnologia 100(1):69–80Google Scholar
  31. Nouri HR, Karkhah A, Varasteh A, Sankian M (2016) Expression of a chimeric allergen with high rare codons content in codon bias-adjusted Escherichia coli: E. coli BL21 (DE3)-codon plus RIL as an efficient host. Curr Microbiol 73(1):91–98CrossRefGoogle Scholar
  32. Pappas G, Akritidis N, Tsianos E (2005) Effective treatments in the management of brucellosis. Expert Opin Pharmcother 6(2):201–209CrossRefGoogle Scholar
  33. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190CrossRefGoogle Scholar
  34. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612CrossRefGoogle Scholar
  35. Pourseif MM, Moghaddam G, Naghili B, Saeedi N, Parvizpour S, Nematollahi A, Omidi Y (2018) A novel in silico minigene vaccine based on CD4 + T-helper and B-cell epitopes of EG95 isolates for vaccination against cystic echinococcosis. Comput Biol Chem 72:150–163CrossRefGoogle Scholar
  36. Rani R, Fernandez-Vina M, Stastny PJT a (1998) Associations between HLA class II alleles in a North Indian population. Tissue Antigens 52(1):37–43CrossRefGoogle Scholar
  37. Rossman MD, Thompson B, Frederick M, Maliarik M, Iannuzzi MC, Rybicki BA, Panday JP, Newran LS, Migra E, Beznik-Cizman, BJ (2003) HLA-DRB1* 1101: a significant risk factor for sarcoidosis in blacks and whites. Am J Hum Genet 73(4):720–735CrossRefGoogle Scholar
  38. Sekhavati MH, Heravi RM, Tahmoorespur M, Yousefi S, Abbassi-Daloii T, Akbari, R (2015) Cloning, molecular analysis and epitopics prediction of a new chaperone GroEL Brucella melitensis antigen. Iran J Basic Med Sci 18(5):499Google Scholar
  39. Seleem MN, Jain N, Pothayee N, Ranjan A, Riffle J, Sriranganathan N (2009) Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiol Lett 294(1):24–31CrossRefGoogle Scholar
  40. Seleem MN, Boyle SM, Sriranganathan N (2010). Brucellosis: a re-emerging zoonosis. Vet Microbiol 140(3–4):392–398CrossRefGoogle Scholar
  41. Shen Y, Maupetit J, Derreumaux P, Tufféry PJ (2014) Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J Chem Theory Comput 10(10):4745–4758CrossRefGoogle Scholar
  42. Solera J, Martinez-Alfaro E, Espinosa AJD (1997) Recognition and optimum treatment of brucellosis. Drugs 53(2):245–256CrossRefGoogle Scholar
  43. Solera J, Lozano E, Martínez-Alfaro E, Espinosa A, Castillejos ML, Abad, L (1999) Brucellar spondylitis: review of 35 cases and literature survey. Drugs 29(6):1440–1449Google Scholar
  44. Spetsarias S, Koutsouli P, Theodorou G, Theodoropoulos G, Bizelis I (2016) Allelic polymorphism of Ovar-DRB1 exon2 gene and parasite resistance in two dairy sheep breeds. J Health Anim Sci Food Saf 3(1).
  45. Spink WW (1956) The nature of brucellosis. University of Minnesota Press, MinneapolisGoogle Scholar
  46. Trott O, Olson AJJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461Google Scholar
  47. van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the {GROMOS96} manual and user guide. Hochschule Verlag, ZurichGoogle Scholar
  48. Yin D, Li L, Song D, Liu Y, Ju W, Song X, Wang J, Pang B, Xu K, Li J (2016) A novel recombinant multi-epitope protein against Brucella melitensis infection. Immunol Lett 175:1–7CrossRefGoogle Scholar
  49. Young EJ (1995) An overview of human brucellosis. Clin Infect Dis 21(2):283–289CrossRefGoogle Scholar
  50. Yousefi S, Tahmoorespur M, Sekhavati MH (2015) B and T-cell epitope prediction of the OMP25 antigen for developing Brucella melitensis vaccines for sheep. Iran J Appl Anim Sci 5:629–638Google Scholar
  51. Yousefi S, Sekhavati MH, Abbassi Daloii M (2016) Cloning and molecular characterization of Omp31 gene from Brucella melitensis Rev 1 strain. Arch Razi Inst 71(2):117–124Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Saeideh Mohammad Hasani
    • 1
  • Elyas Mohammadi
    • 1
  • Mohammad Hadi Sekhavati
    • 1
    Email author
  1. 1.Department of Animal ScienceFerdowsi University of MashhadMashhadIran

Personalised recommendations