Advertisement

Antimicrobial Activity of Two Novel Venoms from Saudi Arabian Scorpions (Leiurus quinquestriatus and Androctonus crassicauda)

  • Reem AlajmiEmail author
  • Sumaiah Al-ghamdi
  • Ibrahim Barakat
  • Amany Mahmoud
  • Nuzha Abdon
  • Mohamed Al-Ahidib
  • Rewaida Abdel-Gaber
Article
  • 41 Downloads

Abstract

Many recent studies have shown the benefits of scorpion venom, as it components may be used as potential candidates for drug development, especially as antimicrobial compounds against both gram-negative or gram-positive bacterial strains and fungi. Therefore, the present study was conducted to evaluate the antimicrobial activity of venom from two scorpion species that inhabit Saudi Arabia (Leiurus quinquestriatus and Androctonus crassicauda) against four bacterial strains: two gram-negative bacteria (Escherichia coli and Salmonella sp.) and two gram-positive bacteria (Staphylococcus aureus and Paenibacillus larvae). Scorpions were collected from two cities (Riyadh and Taif) and the venom was extracted using electrical stimulation, and then lyophilized. The antimicrobial activity of the lyophilized venoms was evaluated in vitro by an agar well diffusion method against standard bacterial strains by measuring the inhibition zone of each bacterial strain upon treatment with scorpion venom. Our results showed that the crude venom of the two scorpion species had dose-dependent inhibitory effects on the gram-positive and gram-negative bacteria studied.

Keywords

Venom Scorpions Bacterial strains Antimicrobial activity Saudi Arabia 

Notes

Acknowledgements

This research project supported by a grant from the Research Center of the Female Scientific and Medical Colleges, Deanship of Scientific Research, King Saud University, Saudi Arabia. We thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support.

Compliance with Ethical Standards

Conflict of interest

The authors have indicated that they have no conflict of interest regarding the content of this article.

Ethical Approval

All procedures contributing to this work comply with the ethical standards of the relevant national guides on the care and use of laboratory animals and have been approved and authorized by the Institutional Animal Care and Use Committee (IACUC) at King Saud University, Riyadh, Saudi Arabia.

References

  1. Al-Asmari AK, Al-Saief AA, Abdo NM, Al-Moutaery KR (2009) New additions to the scorpion fauna of Riyadh region, Saudi Arabia. J Venom Anim Toxins Incl Trop Dis 15(4):612–632.  https://doi.org/10.1590/S1678-91992009000400003 Google Scholar
  2. Al-Asmari A, Khan HA, Manthiri RA (2012) Rapid profiling of crude scorpion venom using liquid chromatography and its relevance to species identification. Acta Chromatogr 24:501–509.  https://doi.org/10.1556/AChrom.24.2012.3.12 CrossRefGoogle Scholar
  3. Almaaytah A, Albalas Q (2014) Scorpion venom peptides with no disulfide bridges: a review. Peptides 51:35–45.  https://doi.org/10.1016/j.peptides.2013.10.021 CrossRefGoogle Scholar
  4. Arpornsuwan T, Sriwai W, Jaresitthikunchai J, Phaonakrop N, Sritanaudomchai H, Roytrakul S (2014) Anticancer activities of antimicrobial BmKn2 peptides against oral and colon cancer cells. Int J Pept Res Ther 20:501–509.  https://doi.org/10.1007/s10989-014-9417-9 CrossRefGoogle Scholar
  5. Caliskan F, Ergene E, Sogut I, Hatipoglu I, Basalp A, Sivas H, Kanbak G (2013) Biological assays on the effects of Acra3 peptide from Turkish scorpion Androctonus crassicauda venom on a mouse brain tumor cell line (BC3H1) and production of specific monoclonal antibodies. Toxicon 76:350–361.  https://doi.org/10.1016/j.toxicon.2013.09.009 CrossRefGoogle Scholar
  6. Castle NA, Strong PN (1986) Identification of two toxins from scorpion (Leiurus quinquestriatus) venom which block distinct classes of calcium-activated potassium channel. FEBS Lett 209:117–121.CrossRefGoogle Scholar
  7. Chen Y, Cao L, Zhong M, Zhang Y, Han C, Li Q, Liu F (2012) Anti-HIV-1 activity of a new scorpion venom peptide derivative Kn2-7. PLoS ONE 7:e34947.  https://doi.org/10.1371/journal.pone.0034947 CrossRefGoogle Scholar
  8. Conde R, Zamudio FZ, Rodríguez MH, Possani LD (2000) Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS Lett 471:165–168.  https://doi.org/10.1016/S0014-5793(00)01384-3 CrossRefGoogle Scholar
  9. Corzo G, Escoubas P, Villegas E, Barnham KJ, Weilan HE, Norton RS, Nakajima T (2001) Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. Biochem J 359: 35–45.  https://doi.org/10.1042/0264-6021:3590035 CrossRefGoogle Scholar
  10. de Melo ET, Estrela AB, Santos ECG, Machado PRL, Farias KJS, Torres TM, Carvalho E, Lima JPMS, Silva-Júnior AA, Barbosa EG, Fernandes-Pedrosa MDF (2015) Structural characterization of a novel peptide with antimicrobial activity from the venom gland of the scorpion Tityus stigmurus: Stigmurin. Peptides 68:3–10.  https://doi.org/10.1016/j.peptides.2015.03.003 CrossRefGoogle Scholar
  11. de la Salud Bea R, Petraglia AF, de Johnson LEL (2015) Synthesis, antimicrobial activity and toxicity of analogs of the scorpion venom BmKn peptides. Toxicon 101:79–84.  https://doi.org/10.1016/j.toxicon.2015.05.006 CrossRefGoogle Scholar
  12. Du Q, Hou X, Ge L, Li R, Zhou M, Wang H, Shaw C (2014) Cationicity-enhanced analogues of the antimicrobial peptides, AcrAP1 and AcrAP2, from the venom of the scorpion, Androctonus crassicauda, display potent growth modulation effects on human cancer cell lines. Int J Biol Sci 10:1097–1107.  https://doi.org/10.7150/ijbs.9859 CrossRefGoogle Scholar
  13. Du Q, Hou X, Wang L, Zhang Y, Xi X, Wang H, Zhou M, Duan J, Wei M, Chen T, Shaw C (2015) AaeAP1 and AaeAP2: novel antimicrobial peptides from the venom of the scorpion, Androctonus aeneas: structural characterization, molecular cloning of biosynthetic precursor-encoding cDNAs and engineering of analogues with enhanced antimicrobial and anticancer activities. Toxins 7:219–237.  https://doi.org/10.3390/toxins7020219 CrossRefGoogle Scholar
  14. Ehret-Sabatier L, Loew D, Goyffon M, Fehlbaum P, Hoffmann JA, van Dorsselaer A, Bulet P (1996) Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem 271: 29537–29544.  https://doi.org/10.1074/jbc.271.47.29537 CrossRefGoogle Scholar
  15. Erdeş E, Doğan TS, Coşar İ, Danışman T, Kunt KB, Şeker T, Özen C (2014) Characterization of Leiurus abdullahbayrami (Scorpiones: Buthidae) venom: peptide profile, cytotoxicity and antimicrobial activity. J Venom Anim Toxins Incl Trop Dis 20:48.  https://doi.org/10.1186/1678-9199-20-48 CrossRefGoogle Scholar
  16. Fatani AJ (2010) Comparative study between peripherally and centrally acting sublethal and lethal doses of Leiurus quinquestriatus scorpion venom in rabbits: the usefulness of the sodium channel blocker lidocaine. Saudi Pharm J 18:137–151.  https://doi.org/10.1016/j.jsps.2010.05.007 CrossRefGoogle Scholar
  17. Fox GA, Cooper AM, Hayes WK (2015) The dilemma of choosing a reference character for measuring sexual size dimorphism, sexual body component dimorphism, and character scaling: cryptic dimorphism and allometry in the scorpion Hadrurus arizonensis. PLoS ONE 10:e0120392.  https://doi.org/10.1371/journal.pone.0120392 CrossRefGoogle Scholar
  18. Gao B, Tian C, Zhu S (2007) Inducible antibacterial response of scorpion venom gland. Peptides 28:2299–2305.  https://doi.org/10.1016/j.peptides.2007.10.004 CrossRefGoogle Scholar
  19. Garcia F, Villegas E, Espino-Solis GP, Rodriguez A, Paniagua-Solis JF, Sandoval-Lopez G, Corzo G (2013) Antimicrobial peptides from arachnid venoms and their microbicidal activity in the presence of commercial antibiotics. J Antibiot 66:3–10.  https://doi.org/10.1038/ja.2012.87 CrossRefGoogle Scholar
  20. Goudet C, Chi CW, Tytgat J (2002) An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon 40:1239–1258.  https://doi.org/10.1016/S0041-0101(02)00142-3 CrossRefGoogle Scholar
  21. Gould IM, Bal AM (2013) New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence 4: 185–191.  https://doi.org/10.4161/viru.22507 CrossRefGoogle Scholar
  22. Groshong TD (1993) Scorpion envenomation in eastern Saudi Arabia. Ann Emerg Med 22:1431–1437.  https://doi.org/10.1016/S0196-0644(05)81992-4 CrossRefGoogle Scholar
  23. Gueron M, Ilia R, Sofer S (1992) The cardiovascular system after scorpion envenomation. A review. J Toxicol Clin Toxicol 30: 245–258.  https://doi.org/10.3109/15563659209038636 CrossRefGoogle Scholar
  24. Guo X, Ma C, Du Q, Wei R, Wang L, Zhou M, Shaw C (2013) Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities. Biochem Cell Biol 95:1784–1794.  https://doi.org/10.1016/j.biochi.2013.06.003 Google Scholar
  25. Gupta SD, Halder B, Gomes A, Gomes A (2013) Bengalin initiates autophagic cell death through ERK-MAPK pathway following suppression of apoptosis in human leukemic U937 cells. Life Sci 93: 271–276.  https://doi.org/10.1016/j.biochi.2013.06.003 CrossRefGoogle Scholar
  26. Harrison PL, Abdel-Rahman MA, Miller K, Strong PN (2014) Antimicrobial peptides from scorpion venoms. Toxicon 88:115–137.  https://doi.org/10.1016/j.toxicon.2014.06.006 CrossRefGoogle Scholar
  27. Hmed B, Serria HT, Mounir ZK (2013) Scorpion peptides: potential use for new drug development. J Toxicol 2013:1–15.  https://doi.org/10.1155/2013/958797 CrossRefGoogle Scholar
  28. Hokkanen HM, Lynch JM (2003) Biological control: benefits and risks (Vol. 4). Cambridge University Press, CambridgeGoogle Scholar
  29. Hsueh PR, Chen WH, Luh KT (2005) Relationships between antimicrobial use and antimicrobial resistance in gram-negative bacteria causing nosocomial infections from 1991 to 2003 at a university hospital in Taiwan. Int J Antimicrob Agents 26: 463–472.  https://doi.org/10.1016/j.ijantimicag.2005.08.016 CrossRefGoogle Scholar
  30. Junior VH, de Amorim PCH, Junior WTH, Cardoso JLC (2015) Venomous and poisonous arthropods: identification, clinical manifestations of envenomation, and treatments used in human injuries. Rev Soc Bras Med Trop 48(6):650–657.  https://doi.org/10.1590/0037-8682-0242-2015 CrossRefGoogle Scholar
  31. Khilnani JC, Wing HJ (2015) Protocols to test the activity of antimicrobial peptides against the honey bee pathogen Paenibacillus larvae. J Microbiol Methods 117:54–56.  https://doi.org/10.1016/j.mimet.2015.07.017 CrossRefGoogle Scholar
  32. Liu G, Yang F, Li F, Li Z, Lang Y, Shen B, Wu Y, Li W, Harrison PL, Strong PN, Xie Y, Miller K, Cao Z (2018) Therapeutic potential of a scorpion venom-derived antimicrobial peptide and its homologs against antibiotic-resistant gram-positive bacteria. Front Microbiol 9:1159.  https://doi.org/10.3389/fmicb.2018.01159 CrossRefGoogle Scholar
  33. Lourenҫo WR (2018) The evolution and distribution of noxious species of scorpions (Arachnida: Scorpiones). J Venom Anim Toxins Incl Trop Dis 24:1–12.  https://doi.org/10.1186/s40409-017-0138-3 CrossRefGoogle Scholar
  34. Moerman L, Bosteels S, Noppe W, Willems J, Clynen E, Schoofs L, Verdonck F (2002) Antibacterial and antifungal properties of α-helical, cationic peptides in the venom of scorpions from southern Africa. Eur J Biochem 269: 4799–4810.  https://doi.org/10.1046/j.1432-1033.2002.03177.x CrossRefGoogle Scholar
  35. Mullen GR, Durden LA (eds) (2009) Medical and veterinary entomology. Academic Press, New YorkGoogle Scholar
  36. Nime M, Casanoves F, Mattoni CI (2014) Scorpion diversity in two different habitats in the Arid Chaco, Argentina. J Insect Conserv 18(3):373–384.  https://doi.org/10.1007/s10841-014-9646-4 CrossRefGoogle Scholar
  37. Ortiz E, Gurrola GB, Schwartz EF, Possani LD (2015) Scorpion venom components as potential candidates for drug development. Toxicon 93:125–135.  https://doi.org/10.1016/j.toxicon.2014.11.233 CrossRefGoogle Scholar
  38. Patel JB, Cockerill FR, Alder J, Bradford PA, Eliopoulos GM, Hardy DJ (2014) Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. CLSI Stand Antimicrob Susceptibility Test 34:1–226Google Scholar
  39. Possani LD, Becerril B, Delepierre M, Tytgat J (1999) Scorpion toxins specific for Na+-channels. Eur J Biochem 264:287–300.  https://doi.org/10.1046/j.1432-1327.1999.00625.x CrossRefGoogle Scholar
  40. Possani LD, Merino E, Corona M, Bolivar F, Becerril B (2000) Peptides and genes coding for scorpion toxins that affect ion-channels. Biochem Cell Biol 82:861–868.  https://doi.org/10.1016/S0300-9084(00)01167-6 Google Scholar
  41. Prendini L, Wheeler WC (2005) Scorpion higher phylogeny and classification, taxonomic anarchy, and standards for peer review in online publishing. Cladistics 21:446–494.  https://doi.org/10.1111/j.1096-0031.2005.00073.x CrossRefGoogle Scholar
  42. Ramírez–Carreto S, Jiménez–Vargas JM, Rivas–Santiago B, Corzo G, Possani LD, Becerril B, Ortiz E (2015) Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity. Peptides 73: 51–59.  https://doi.org/10.1016/j.peptides.2015.08.014 CrossRefGoogle Scholar
  43. Robinson RK (2014) Encyclopedia of food microbiology. In: Batt CA (ed), Academic press, New YorkGoogle Scholar
  44. Ruiming Z, Yibao M, Yawen H, Zhiyong D, Yingliang W, Zhijian C, Wenxin L (2010) Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components. BMC Genom 11:1–15.  https://doi.org/10.1186/1471-2164-11-452 CrossRefGoogle Scholar
  45. Salama W, Geasa N (2014) Investigation of the antimicrobial and hemolytic activity of venom of some Egyptian scorpion. J Microbiol Antimicrob 6:21–28.  https://doi.org/10.5897/JMA2013.0286 CrossRefGoogle Scholar
  46. Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Int J Numer Methods Fluids 42: 321–324.  https://doi.org/10.1016/j.ymeth.2007.01.006 Google Scholar
  47. Tarazi S (2015) Scorpion venom as antimicrobial peptides (AMPs): a review article. Int Arab J Antimicrob Agents 5(3):1–9.  https://doi.org/10.3823/777 Google Scholar
  48. Torres-Larios A, Gurrola GB, Zamudio FZ, Possani LD (2000) Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. Eur J Biochem 267:5023–5031.  https://doi.org/10.1046/j.1432-1327.2000.01556.x CrossRefGoogle Scholar
  49. Tytgat J, Chandy KG, Garcia ML, Gutman GA, Martin-Eauclaire MF, van der Walt JJ, Possani LD (1999) A unified nomenclature for short-chain peptides isolated from scorpion venoms: α-KTx molecular subfamilies. Trends Pharmacol Sci 20: 444–447.  https://doi.org/10.1016/S0165-6147(99)01398-X CrossRefGoogle Scholar
  50. Valdez-Velazquéz LL, Romero-Gutierrez MT, Delgado-Enciso I, Dobrovinskaya O, Melnikov V, Quintero-Hernández V, Zamudio F (2016) Comprehensive analysis of venom from the scorpion Centruroides tecomanus reveals compounds with antimicrobial, cytotoxic, and insecticidal activities. Toxicon 118: 95–103.  https://doi.org/10.1016/j.toxicon.2016.04.046 CrossRefGoogle Scholar
  51. World Health Organization (1981) Progress in the characterization of venoms and standardization of anti-venoms. World Health Organization, GenevaGoogle Scholar
  52. Yamashita T, Rhoads DD (2013) Species delimitation and morphological divergence in the scorpion Centruroides vittatus (Say, 1821): insights from phylogeography. PLoS ONE 8:e68282.  https://doi.org/10.1371/journal.pone.0068282 CrossRefGoogle Scholar
  53. Yigit N, Benli M (2008) The venom gland of the scorpion species Euscorpius mingrelicus (Scorpiones: Euscorpiidae): morphological and ultrastructural characterization. J Venom Anim Toxins Incl Trop Dis 14(3):466–480.  https://doi.org/10.1590/S1678-91992008000300007 CrossRefGoogle Scholar
  54. Zeng XC, Wang S, Nie Y, Zhang L, Luo X (2012) Characterization of BmKbpp, a multifunctional peptide from the Chinese scorpion Mesobuthus martensii Karsch: gaining insight into a new mechanism for the functional diversification of scorpion venom peptides. Peptides 33: 44–51.  https://doi.org/10.1016/j.peptides.2011.11.012 CrossRefGoogle Scholar
  55. Zeng XC, Zhou L, Shi W, Luo X, Zhang L, Nie Y, Cao H (2013) Three new antimicrobial peptides from the scorpion Pandinus imperator. Peptides 45: 28–34. https://doi.org/10.1016/j.peptides.2013.03.026 CrossRefGoogle Scholar
  56. Zhang Y (2015) Why do we study animal toxins? Dongwuxue Yanjiu 36(4):183–222.  https://doi.org/10.13918/j.issn.2095-8137.2015.4.183 Google Scholar
  57. Zhao Z, Ma Y, Dai C, Zhao R, Li S, Wu Y, Li W (2009) Imcroporin, a new cationic antimicrobial peptide from the venom of the scorpion Isometrus maculates. Antimicrob Agents Chemother 53(8):3472–3477.  https://doi.org/10.1128/AAC.01436-08 CrossRefGoogle Scholar
  58. Zlotkin E, Shulov AS (1969) A simple device for collecting scorpion venom. Toxicon 7:331–332CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Reem Alajmi
    • 1
    Email author
  • Sumaiah Al-ghamdi
    • 1
  • Ibrahim Barakat
    • 1
    • 2
  • Amany Mahmoud
    • 3
    • 4
  • Nuzha Abdon
    • 5
  • Mohamed Al-Ahidib
    • 5
  • Rewaida Abdel-Gaber
    • 1
    • 6
  1. 1.Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Cell BiologyNational Research CenterCairoEgypt
  3. 3.Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Department of Pharmaceutical Medicinal Chemistry, Faculty of PharmacyAssiut UniversityAssiutEgypt
  5. 5.King Abdulaziz Medical City National Guard HospitalRiyadhSaudi Arabia
  6. 6.Department of Zoology, Faculty of ScienceCairo UniversityCairoEgypt

Personalised recommendations