Advertisement

Opioid Peptides: An Overview of Functional Significance

  • Jaspreet Kaur
  • Vikas KumarEmail author
  • Kartik Sharma
  • Sawinder Kaur
  • Yogesh Gat
  • Ankit Goyal
  • Beenu Tanwar
Article
  • 22 Downloads

Abstract

Bioactive peptides have been reported to exhibit opioid-like activity and are termed as opioid peptides. Either these are produced within the human body or they are derived from certain food sources (milk, cereals, vegetables, meat, poultry etc.), the former being endogenous opioid peptides and the latter are the exogenous opioid peptides. The opioid peptides perform a wide range of biological functions including neuromodulation, hormone-like function, analgesia, sedative effect, sleepiness, anti-hypertensive effect, ACE-inhibitory activity and many more. However, also possess adverse effects such as depressive effect, development of alcoholism, inflammation, apnea, autism and even death in rare cases. The effect of various processing methods and techniques on the opioid peptides requires further exploration. This is a unique and comprehensive review that will explore the opioid peptides, their types, sources, distribution and mechanism of action as well as the health effects.

Keywords

Opioid peptides Endogenous and exogenous opioid peptides Mechanism of action Health effects 

Notes

Acknowledgements

The authors are thankful to Lovely Professional University for providing the necessary facilities, which were used for the preparation of manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. Adams ML, Brase DA, Welch SP, Dewey WL (1986) The role of endogenous peptides in the action of opioid analgesics. Ann Emerg Med 15(9):1030–1035CrossRefPubMedGoogle Scholar
  2. Albenzio M, Santillo A, Caroprese M, dellaMalva A, Marino R (2017) Bioactive peptides in animal food products. Foods 6(5):35CrossRefGoogle Scholar
  3. Bell SJ, Grochoski GT, Clarke AJ (2006) Health implications of milk containing β-casein with the A2 genetic variant. Crit Rev Food Sci Nutr 46(1):93–100CrossRefPubMedGoogle Scholar
  4. Bhat ZF, Kumar S, Bhat HF (2015) Bioactive peptides of animal origin: a review. J Food Sci Technol 52(9):5377–5392CrossRefPubMedGoogle Scholar
  5. Bhat ZF, Kumar S, Bhat HF (2017) Antihypertensive peptides of animal origin: a review. Crit Rev Food Sci Nutr 57(3):566–578CrossRefPubMedGoogle Scholar
  6. Carrasco-Castilla J, Hernández-Álvarez AJ, Jiménez-Martínez C, Gutiérrez-López GF, Dávila-Ortiz G (2012) Use of proteomics and peptydomics methods in food bioactive peptide science and engineering. Food Eng Rev 4:224–243CrossRefGoogle Scholar
  7. Chakrabarti S, Wu J (2016) Bioactive peptides on endothelial function. Food Sci Hum Wellness 5(1):1–7CrossRefGoogle Scholar
  8. Chang KJ (1984) Opioid peptides have actions on the immune system. Trends Neurosci 7(7):234–235CrossRefGoogle Scholar
  9. Cordain L (1999) Cereal grains: humanity’s double-edged sword. World Rev Nutr Diet 84:19–73CrossRefPubMedGoogle Scholar
  10. Cozzone AJ (2010) Proteins: fundamental chemical properties. In Encyclopedia of life sciences. Wiley, HobokenGoogle Scholar
  11. Daliri EBM, Lee BH, Oh DH (2017a) Current trends and perspectives of bioactive peptides. Crit Rev Food Sci Nutr.  https://doi.org/10.1080/10408398.2017.1319795 Google Scholar
  12. Daliri EBM, Oh DH, Lee BH (2017b) Bioactive peptides. Foods 6(5):32CrossRefGoogle Scholar
  13. Elliott RB, Harris DP, Hill JP, Bibby NJ, Wasmuth HE (1999) Type I (insulin-dependent) diabetes mellitus and cow milk: casein variant consumption. Diabetologia 42(3):292–296CrossRefPubMedGoogle Scholar
  14. Erdmann K, Cheung BW, Schröder H (2008) The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem 19(10):643–654CrossRefPubMedGoogle Scholar
  15. Froehlich JC (1997) Opioid peptides. Alcohol Research Health 21(2):132Google Scholar
  16. Gach K, Do-Rego JC, Fichna J, Storr M, Delbro D, Toth G, Janecka A (2010) Synthesis and biological evaluation of novel peripherally active morphiceptin analogs. Peptides 31(8):1617–1624CrossRefPubMedGoogle Scholar
  17. Gauthier SF, Pouliot Y, Saint-Sauveur D (2006) Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int Dairy J 16(11):1315–1323CrossRefGoogle Scholar
  18. Gobbetti M, Stepaniak L, De Angelis M, Corsetti A, Di Cagno R (2002) Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit Rev Food Sci Nutr 42(3):223–239CrossRefPubMedGoogle Scholar
  19. Holden JE, Jeong Y, Forrest JM (2005) The endogenous opioid system and clinical pain management. AACN Adv Crit Care 16(3):291–301Google Scholar
  20. Holzer P (2014) Pharmacology of opioids and their effects on gastrointestinal function. Am J Gastroenterol Suppl 2(1):9–16CrossRefGoogle Scholar
  21. Hughes J, Beaumont A, Fuentes JA, Malfroy B, Unsworth C (1980) Opioid peptides: aspects of their origin, release and metabolism. J Exp Biol 89(1):239–255PubMedGoogle Scholar
  22. Ijäs H, Collin M, Finckenberg P, Pihlanto-Leppälä A, Korhonen H, Korpela R, Vapaatalo H, Nurminen ML (2004) Antihypertensive opioid-like milk peptide α-lactorphin: lack of effect on behavioural tests in mice. Int Dairy J 14(3):201–205CrossRefGoogle Scholar
  23. Jauhiainen T, Korpela R (2007) Milk peptides and blood pressure. J Nutr 137(3):825S–829SCrossRefPubMedGoogle Scholar
  24. Kamiński S, Cieślińska A, Kostyra E (2007) Polymorphism of bovine beta-casein and its potential effect on human health. J Appl Genet 48(3):189–198CrossRefPubMedGoogle Scholar
  25. Kanjhan R (1995) Opioids and pain. Clin Exp Pharmacol Physiol 22(6–7):397–403CrossRefPubMedGoogle Scholar
  26. Koneru A, Satyanarayana S, Rizwan S (2009) Endogenous opioids: their physiological role and receptors. Glob J Pharmacol 3(3):149–153Google Scholar
  27. Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16(9):945–960CrossRefGoogle Scholar
  28. Lesniak A, Lipkowski AW (2011) Opioid peptides in peripheral pain control. Acta Neurobiol Exp 71(1):129–138Google Scholar
  29. McLachlan CNS (2001) β-Casein A1, ischaemic heart disease mortality, and other illnesses. Med Hypotheses 56(2):262–272CrossRefPubMedGoogle Scholar
  30. Mcnally GP, Akil H (2002) Opioid peptides and their receptors: overview and function in pain modulation. Lippincott, Williams, & Wilkins, New York, pp 35–46Google Scholar
  31. Meisel H (1986) Chemical characterization and opioid activity of an exorphin isolated from in vivo digests of casein. FEBS Lett 196(2):223–227CrossRefPubMedGoogle Scholar
  32. Mohanty DP, Mohapatra S, Misra S, Sahu PS (2016) Milk derived bioactive peptides and their impact on human health—a review. Saudi J Biol Sci 23(5):577–583CrossRefPubMedGoogle Scholar
  33. Morley JE (1981) The endocrinology of the opiates and opioid peptides. Metabolism 30(2):195–209CrossRefPubMedGoogle Scholar
  34. Morley JE (1983) Neuroendocrine effects of endogenous opioid peptides in human subjects: a review. Psychoneuroendocrinology 8(4):361–379CrossRefPubMedGoogle Scholar
  35. Nguyen DD, Johnson SK, Busetti F, Solah VA (2015) Formation and degradation of beta-casomorphins in dairy processing. Crit Rev Food Sci Nutr 55(14):1955–1967CrossRefPubMedGoogle Scholar
  36. Orona-Tamayo D, Valverde ME, López OP (2018) Bioactive peptides from selected Latin American food crops—a nutraceutical and molecular approach. Crit Rev Food Sci Nutr.  https://doi.org/10.1080/10408398.2018.1434480 PubMedGoogle Scholar
  37. Paroli E (1988) Opioid peptides from food (the exorphins). World Rev Nutr Diet 55:58–97CrossRefPubMedGoogle Scholar
  38. Rajanbabu V, Chen JY (2011) Applications of antimicrobial peptides from fish and perspectives for the future. Peptides 32(2):415–420CrossRefPubMedGoogle Scholar
  39. Reddy KVR, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547CrossRefPubMedGoogle Scholar
  40. Rutherfurd-Markwick KJ (2012) Food proteins as a source of bioactive peptides with diverse functions. Br J Nutr 108(2):149–157CrossRefGoogle Scholar
  41. Sánchez A, Vázquez A (2017) Bioactive peptides: a review. Food Qual Saf 1(1):29–46CrossRefGoogle Scholar
  42. Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31(10):1949–1956CrossRefPubMedGoogle Scholar
  43. Séverin S, Wenshui X (2005) Milk biologically active components as nutraceuticals. Crit Rev Food Sci Nutr 45(7–8):645–656CrossRefPubMedGoogle Scholar
  44. Sharma S, Singh R, Rana S (2011) Bioactive peptides: a review. Int J Bioautomation 15(4):223–250Google Scholar
  45. Sourabh A, Rai AK, Chauhan A, Jeyaram K, Taweechotipatr M, Panesar PS et al (2015) Health related issues and indigenous fermented products. In: Joshi VK (ed) Indigenous fermented foods of South Asia. CRC Press, Boca Raton, pp 303–343Google Scholar
  46. Svedberg J, de Haas J, Leimenstoll G, Paul F, Teschemacher H (1985) Demonstration of β-casomorphin immunoreactive materials in in vitro digests of bovine milk and in small intestine contents after bovine milk ingestion in adult humans. Peptides 6(5):825–830CrossRefPubMedGoogle Scholar
  47. Tailford KA, Berry CL, Thomas AC, Campbell JH (2003) A casein variant in cow’s milk is atherogenic. Atherosclerosis 170(1):13–19CrossRefPubMedGoogle Scholar
  48. Trivedi MS, Shah JS, Al-Mughairy S, Hodgson NW, Simms B, Trooskens GA, Van Criekinge W, Deth RC (2014) Food-derived opioid peptides inhibit cysteine uptake with redox and epigenetic consequences. J Nutr Biochem 25(10):1011–1018CrossRefPubMedGoogle Scholar
  49. Trivedi MS, Hodgson NW, Walker SJ, Trooskens G, Nair V, Deth RC (2015) Epigenetic effects of casein-derived opioid peptides in SH-SY5Y human neuroblastoma cells. Nutr Metab 12:54CrossRefGoogle Scholar
  50. Wang Y, Van Bockstaele EJ, Liu-Chen LY (2008) In vivo trafficking of endogenous opioid receptors. Life Sci 83(21–22):693–699CrossRefPubMedGoogle Scholar
  51. Zioudrou C, Streaty RA, Klee WA (1979) Opioid peptides derived from food proteins. The exorphins. J Biol Chem 254(7):2446–2449PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Food Technology and Nutrition, School of AgricultureLovely Professional UniversityPhagwaraIndia
  2. 2.Department of Dairy ChemistryMansinhbhai Institute of Dairy and Food TechnologyMehsanaIndia
  3. 3.Department of Dairy TechnologyMansinhbhai Institute of Dairy and Food TechnologyMehsanaIndia

Personalised recommendations