Kinetics Study of Antimicrobial Peptide, Melittin, in Simultaneous Biofilm Degradation and Eradication of Potent Biofilm Producing MDR Pseudomonas aeruginosa Isolates

  • Reyhaneh Shams Khozani
  • Delavar Shahbazzadeh
  • Naser Harzandi
  • Mohammad Mehdi Feizabadi
  • Kamran Pooshang BagheriEmail author


Biofilm associated Pseudomonas aeruginosa infections are of major clinical concern due to treatment failure by conventional antibiotics. Referring to many reports, antimicrobial peptides (AMPs) would be act as a new promising agent to overcome the issue. In this regard, our study was aimed to evaluate the kinetics of melittin as a natural AMP, in simultaneously degrading and killing potent biofilm producing multidrug-resistant (MDR) P. aeruginosa isolates. The sensitivity of P. aeruginosa clinical isolates against routinely prescribed antibiotics was evaluated using disc diffusion and micro-dilution broth methods. Biofilm formation ability of the isolates was determined by colorimetric method. The biofilm formation kinetics was evaluated in five highly biofilm producer MDR isolates during 48 h. The efficiency of melittin to degradation of biofilm biomass and killing the bacteria within the biofilm were kinetically performed. The degradation activity of melittin on preformed biofilm and also its effect on the morphology of P. aeruginosa within the biofilm was investigated by field emission-scanning electron microscopy (FE-SEM). Melittin at the amount of 2 and 4 µg inhibited or killed all the examined strains in planktonic state while at 50 µg degraded the biofilm layer and killed all embedded bacteria after 24 and 48 h, respectively. FE-SEM results confirmed the biofilm removal and killing activities of melittin. Linear regression analysis verified the trend of melittin’s activities in a concentration and time dependent manner. In conclusion, it seems plausible that melittin should be further investigated in an animal model of biofilm associated burn infection as a new drug lead.


Antimicrobial peptides Biofilm degradation Pseudomonas aeruginosa Melittin 



This investigation is a part of the Ph.D. thesis of Reyhaneh Shams Khozani, approved by Faculty of Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran and Pasteur Institute of Iran, Tehran-Iran.

Author Contributions

RSK performed all experiments and also contributed in writing the manuscript. DS, NH, and MMF contributed as advisor. KPB contributed in experimental design, writing and redaction of the manuscript and also supervised the project. The idea for application of melittin in removing the P. aeruginosa associated biofilm and killing the embedded bacteria belongs to the corresponding author, KPB.

Compliance with Ethical Standards

Conflict of interest

Reyhaneh Shams Khozani, Delavar Shahbazzadeh, Naser Harzandi, Mohammad Mehdi Feizabadi, and Kamran Pooshang Bagheri declare that they have no conflict of interest.

Research involving Human and Animal Participants

This article does not contain studies with human participants or animals performed by any of the authors.


  1. Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y (2006) Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 50(1):43–8PubMedPubMedCentralGoogle Scholar
  2. Balcázar JL, Subirats J, Borrego CM (2015) The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol 6:1216PubMedPubMedCentralGoogle Scholar
  3. Batoni G, Maisetta G, Esin S (2016) Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim Biophys Acta (BBA) Biomembr 1858(5):1044–1060Google Scholar
  4. Beringer PM, Bensman TJ, Ho H, Agnello M, Denovel N, Nguyen A et al (2015) Rhesus θ-defensin-1 (RTD-1) exhibits in vitro and in vivo activity against cystic fibrosis strains of Pseudomonas aeruginosa. J Antimicrob Chemother 71(1):181–188PubMedPubMedCentralGoogle Scholar
  5. Chung PY, Khanum R (2017) Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect 50(4):405–410PubMedGoogle Scholar
  6. Clinical and Laboratory Standards Institute guideline (2015) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-10th Clinical and Laboratory Standards Institute CLSI guideline. M07-A10Google Scholar
  7. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322PubMedGoogle Scholar
  8. da Mata ÉCG, Mourão CBF, Rangel M, Schwartz EF (2017) Antiviral activity of animal venom peptides and related compounds. J Venom Anim Toxins incl Trop Dis 23(1):3PubMedPubMedCentralGoogle Scholar
  9. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433PubMedPubMedCentralGoogle Scholar
  10. de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16(5):580–589PubMedGoogle Scholar
  11. Dean SN, Bishop BM, Van Hoek ML (2011) Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: d-enantiomer of LL-37. Front Microbiol 2:128PubMedPubMedCentralGoogle Scholar
  12. Diamond G, Beckloff N, Weinberg A, Kisich KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15(21):2377–2392Google Scholar
  13. DiMuzio EE, Healy DP, Durkee P, Neely AN, Kagan RJ (2014) Trends in bacterial wound isolates and antimicrobial susceptibility in a pediatric burn hospital. J Burn Care Res 35(5):e304-e11Google Scholar
  14. El-Azizi M, Farag N, Khardori N (2015) Antifungal activity of amphotericin B and voriconazole against the biofilms and biofilm-dispersed cells of Candida albicans employing a newly developed in vitro pharmacokinetic model. Ann Clin Microbiol Antimicrob 14(1):21PubMedPubMedCentralGoogle Scholar
  15. Falagas ME, Koletsi PK, Bliziotis IA (2006) The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J Med Microbiol 55(12):1619–1629PubMedGoogle Scholar
  16. Felício MR, Silva ON, Gonçalves S, Santos NC, Franco OL (2017) Peptides with dual antimicrobial and anticancer activities. Front Chem 5:5PubMedPubMedCentralGoogle Scholar
  17. Gaspar D, Veiga AS, Castanho MA (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4:294PubMedPubMedCentralGoogle Scholar
  18. Grassi L, Maisetta G, Maccari G, Esin S, Batoni G (2017) Analogs of the frog-skin antimicrobial peptide temporin 1 Tb exhibit a wider spectrum of activity and a stronger antibiofilm potential as compared to the parental peptide. Front Chem 5:24PubMedPubMedCentralGoogle Scholar
  19. Hachem RY, Chemaly RF, Ahmar CA, Jiang Y, Boktour MR, Rjaili GA et al (2007) Colistin is effective in treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa in cancer patients. Antimicrob Agents Chemother 51(6):1905–1911PubMedPubMedCentralGoogle Scholar
  20. Hirsch EB, Tam VH (2010) Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res 10(4):441–451PubMedPubMedCentralGoogle Scholar
  21. Hirt H, Gorr S-U (2013) Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa. Antimicrob Agents Chemother 57(10):4903–4910PubMedPubMedCentralGoogle Scholar
  22. Høiby N, Frederiksen B, Pressler T (2005) Eradication of early Pseudomonas aeruginosa infection. J Cyst Fibros 4:49–54PubMedGoogle Scholar
  23. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332PubMedGoogle Scholar
  24. Ishida H, Ishida Y, Kurosaka Y, Otani T, Sato K, Kobayashi H (1998) In vitro and in vivo activities of levofloxacin against biofilm-producing Pseudomonas aeruginosa. Antimicrob Agents Chemother 42(7):1641–1645PubMedPubMedCentralGoogle Scholar
  25. Jindal M, Le C, Mohd Yusof M, Sekaran S (2014) Net charge, hydrophobicity and specific amino acids contribute to the activity of antimicrobial peptides. J Health Transl Med 17(1)Google Scholar
  26. Klockgether J, Tümmler B (2017) Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Research 6:1261PubMedPubMedCentralGoogle Scholar
  27. Lee M-T, Sun T-L, Hung W-C, Huang HW (2013) Process of inducing pores in membranes by melittin. Proc Natl Acad Sci USA 110(35):14243–14248PubMedGoogle Scholar
  28. Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mandal SM, Roy A, Ghosh AK, Hazra TK, Basak A, Franco OL (2014) Challenges and future prospects of antibiotic therapy: from peptides to phages utilization. Front Pharmacol 5:105PubMedPubMedCentralGoogle Scholar
  30. Mishra B, Wang G (2017) Individual and combined effects of engineered peptides and antibiotics on Pseudomonas aeruginosa biofilms. Pharmaceuticals 10(3):58PubMedCentralGoogle Scholar
  31. Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN (2017) A short d-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Sci Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Oliver A, Levin BR, Juan C, Baquero F, Blázquez J (2004) Hypermutation and the preexistence of antibiotic-resistant Pseudomonas aeruginosa mutants: implications for susceptibility testing and treatment of chronic infections. Antimicrob Agents Chemother 48(11):4226–4233PubMedPubMedCentralGoogle Scholar
  33. Percival SL, Hill KE, Malic S, Thomas DW, Williams DW (2011) Antimicrobial tolerance and the significance of persister cells in recalcitrant chronic wound biofilms. Wound Repair regen 19(1):1–9PubMedGoogle Scholar
  34. Percival SL, McCarty SM, Lipsky B (2015) Biofilms and wounds: an overview of the evidence. Adv Wound Care 4(7):373–381Google Scholar
  35. Pompilio A, Crocetta V, Scocchi M, Pomponio S, Di Vincenzo V, Mardirossian M et al (2012) Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed α-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. BMC Microbiol 12(1):145PubMedPubMedCentralGoogle Scholar
  36. Pulido D, Prats-Ejarque G, Villalba C, Albacar M, González-López JJ, Torrent M et al (2016) A novel RNase 3/ECP peptide for Pseudomonas aeruginosa biofilm eradication that combines antimicrobial, lipopolysaccharide binding, and cell-agglutinating activities. Antimicrob Agents Chemother 60(10):6313–6325PubMedPubMedCentralGoogle Scholar
  37. Sánchez-Gómez S, Ferrer-Espada R, Stewart PS, Pitts B, Lohner K, de Tejada GM (2015) Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms. BMC Microbiol 15(1):137PubMedPubMedCentralGoogle Scholar
  38. Schillaci D, Cusimano MG, Spinello A, Barone G, Russo D, Vitale M et al (2014) Paracentrin 1, a synthetic antimicrobial peptide from the sea-urchin Paracentrotus lividus, interferes with staphylococcal and Pseudomonas aeruginosa biofilm formation. AMB Express 4(1):78PubMedPubMedCentralGoogle Scholar
  39. Segev-Zarko L-a, Saar-Dover R, Brumfeld V, Mangoni ML, Shai Y (2015) Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochem J 468(2):259–270PubMedGoogle Scholar
  40. Shang D, Meng X, Zhang D, Kou Z (2017) Antibacterial activity of chensinin-1b, a peptide with a random coil conformation, against multiple-drug-resistant Pseudomonas aeruginosa. Biochem Pharmacol 143:65–78PubMedGoogle Scholar
  41. Terwilliger TC, Eisenberg D (1982) The structure of melittin. II. Interpretation of the structure. J Biol Chem 257(11):6016–6022PubMedGoogle Scholar
  42. Thamri A, Létourneau M, Djoboulian A, Chatenet D, Déziel E, Castonguay A et al (2017) Peptide modification results in the formation of a dimer with a 60-fold enhanced antimicrobial activity. PLoS ONE 12(3):e0173783PubMedPubMedCentralGoogle Scholar
  43. Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M (2014) Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet 10(7):e1004518PubMedPubMedCentralGoogle Scholar
  44. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277Google Scholar
  45. Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J et al (2008) Living on a surface: swarming and biofilm formation. Trends Microbiol 16(10):496–506PubMedGoogle Scholar
  46. Wood TK (2016) Combatting bacterial persister cells. Biotechnol Bioeng 113(3):476–483PubMedGoogle Scholar
  47. Wood TK (2017) Strategies for combating persister cell and biofilm infections. Microb Biotechnol 10(5):1054–1056PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Reyhaneh Shams Khozani
    • 1
  • Delavar Shahbazzadeh
    • 2
  • Naser Harzandi
    • 1
  • Mohammad Mehdi Feizabadi
    • 3
  • Kamran Pooshang Bagheri
    • 2
    Email author
  1. 1.Department of Microbiology, Faculty of Sciences, Karaj BranchIslamic Azad UniversityKarajIran
  2. 2.Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
  3. 3.Department of Microbiology, School of MedicineTehran University of Medical SciencesTehranIran

Personalised recommendations