Advertisement

Solid-phase Chemistry: A Useful Tool to Discover Modulators of Protein Interactions

  • Mar Orzáez
  • Puig Mora
  • Laura Mondragón
  • Enrique Pérez-Payá
  • María J. Vicent
Bruce Merrifield Commemorative Issue

The Solid phase synthesis (SPS) concept, first developed for biopolymers, has spread in every field where organic synthesis is involved. While the potential of the solid-phase method was obvious in 1959 to its discoverer, Prof. R. B. Merrifield, it was unpredictable its dominance in peptide synthesis and especially in combinatorial chemistry, an area not yet conceived. SPS paved the way for solid-phase combinatorial approaches (extensively reviewed in (Choong, I. C. and Ellman, J. A.: 1996, Annu. Rep. Med. Chem. 31, 309–318; Obrecht, D. and Villalgordo, J. M.: 1998, Solid-supported Combinatorial and Parallel Synthesis of Small-Molecular-Weight Compound Libraries. Pergamon Press Ltd., Oxford, UK; Chabala, J. C.: 1995, Curr. Opin. Biotechnol. 6, 632–639; Kamal, A., Reddy, K. L., Devaiah, V., Shankaraiah, N., Reddy, D. R.: 2006, Mini Rev. Med. Chem. 6, 53–69; Whitehead, D. M., McKeown, S. C., Routledge, A.: 2005, Comb. Chem. HTS 8, 361–371; Nefzi, A., Ostresh, J. M., Houghten, R. A.: 1997, Chem. Rev. 97, 449–472; Gordon, E. M., Gallop, M. A., Patel, D. V.: 1996, Acc. Chem. Res. 29, 144–154)) as many laboratories and companies focused on the development of technologies and chemistry suitable to this new methodology. This resulted in the spectacular outburst of combinatorial chemistry, which profoundly changed the approach for new drug discovery. Combinatorial chemistry is currently considered a valid approach for a wide range of biomedical applications, such as, target validation and drug discovery.

Keywords

solid-phase synthesis protein–protein interactions protein–lipid interactions apoptosis cancer sepsis 

Notes

Acknowledgments

This work was supported by grants from Spanish Ministry of Science and Education (MEC) (BIO2004-998), Fundación Centro de Investigación Príncipe Felipe and a Marie Curie Reintegration grant (ERG-2004-06307). M. Orzáez thanks Bancaja for a postdoctoral fellowship. L. Mondragón is supported by a FPI fellowship from MEC.

References

  1. Aggarwal S., Harden J. L., Denmeade S. R. (2006) Bioconjug. Chem. 17:335–340PubMedCrossRefGoogle Scholar
  2. Andrews M. J., McInnes C., Kontopidis G., Innes L., Cowan A., Plater A., et al. (2004) Org. Biomol. Chem. 2:2735–2741, Epub 2004 Sep 9PubMedCrossRefGoogle Scholar
  3. Ansari S., Helms V. (2005) Proteins Struct. Funct. Bioinform. 61:344–355CrossRefGoogle Scholar
  4. Archakov A. I., Govorun V. M., Dubanov A. V., Ivanov Y. D., Veselovsky A. V., Lewi P., et al. (2003) Proteomics 3:380–391PubMedCrossRefGoogle Scholar
  5. Backes B. J., Ellman J. A. (1997) Curr. Opin. Chem. Biol. 1:86–93PubMedCrossRefGoogle Scholar
  6. Baum R. M. (1994) Chem. Eng. News 72:20–26Google Scholar
  7. Boger D. L., Desharnais J., Capps K. (2003) Angew. Chem. Int. Ed. 42:4138–4176CrossRefGoogle Scholar
  8. Bone R. C. (1995) Crit. Care Med. 23:1313–1315PubMedCrossRefGoogle Scholar
  9. Bone R. C., Fisher C. J., Clemmer T. P., et al. (1987) N. Engl. J. Med. 317:653–658PubMedCrossRefGoogle Scholar
  10. Borman S. (1996) Chem. Eng. News 74:29–54Google Scholar
  11. Bradley M. (2002) Curr. Med. Chem. 9:2173–2177PubMedGoogle Scholar
  12. Brase S., Dahmen S. (2000) Chem. Eur. J. 6:1899–1905CrossRefGoogle Scholar
  13. Burkoth T. S., Fafarman A. T., Charych D. H., Connolly M. D., Zuckermann R. N. (2003) J. Am. Chem. Soc. 125(29):8841–8845PubMedCrossRefGoogle Scholar
  14. Canela, N., Orzaez, M., Fucho, R., Mateo, F., Gutierrez, R., Pineda-Lucena, A., et al.: 2006, J. Biol. Chem. 281, 35942–35953Google Scholar
  15. Chabala J. C. (1995) Curr. Opin. Biotechnol. 6:632–639PubMedCrossRefGoogle Scholar
  16. Cho, J. K., White, P. D., Klute, W., Dean, T. W. and Bradley, M.: 2004, Chem. Comm. 502–503Google Scholar
  17. Choong, I. C. and Ellman, J. A.: 1996, Annu. Rep. Med. Chem. 31, 309–318Google Scholar
  18. Christman J. W., Holden E. P., Blackwell T. S. (1995) Crit. Care Med. 23:955–963PubMedCrossRefGoogle Scholar
  19. Collins I., Garrett M. D. (2005) Curr. Opin. Pharmacol. 5:366–373PubMedCrossRefGoogle Scholar
  20. Cremer G. A., Tariq H., Delmas A. F. (2006) J. Pept. Sci. 12:437–442PubMedCrossRefGoogle Scholar
  21. Cronin L., Cook D. J., Carlet J. et al. (1995) Crit. Care Med. 23:1430–1439PubMedCrossRefGoogle Scholar
  22. Curran D. P., Wipf P. (1997) Chem. Eng. News 75:6–7Google Scholar
  23. De Luca L., Giacomelli G., Porcheddu A. (2005) J. Comb. Chem. 7:905–908PubMedCrossRefGoogle Scholar
  24. Dooley C. T., Chung N. N., Wilkes B. C., Schiller P. W., Ramirez-Alvarado M., Blanco F. J., Serrano L. (1996) Nat. Struct. Biol. 7:604–612Google Scholar
  25. Edwards J. V., Caston-Pierre S., Bopp A. F., Goynes W. (2005) J. Pept. Res. 66:160–168PubMedCrossRefGoogle Scholar
  26. Facchinetti M. M., De Siervi A., Toskos D., Senderowicz A. M. (2004) Cancer Res. 64:3629–3637PubMedCrossRefGoogle Scholar
  27. Fischer C. J. (1994) JAMA 271:1836–1843CrossRefGoogle Scholar
  28. Fischer C. J., Zimmerman J., Khazaeli M. B., et al. (1990) Crit. Care Med. 18:1311–1315CrossRefGoogle Scholar
  29. Fischer U., Schulze-Osthoff K. (2005) Cell Death Differ. 12:942–961PubMedCrossRefGoogle Scholar
  30. Furka A. (1995) Drug Dev. Res. 36:1–12CrossRefGoogle Scholar
  31. García-Martín F., Quintanar-Audelo M., Garcia-Ramos Y., Cruz L. J., Gravel C., Furic R., et al. (2006) J. Comb. Chem. 8:213–220PubMedCrossRefGoogle Scholar
  32. Garibay, P., Toy, P. H., Hoeg-Jensen, T. and Janda, K. D.: 1999, Synlett 9, 1438–1440Google Scholar
  33. Geysen H. M., Barteling S. J., Meloen R. H. (1985) Proc. Natl. Acad. Sci. U. S. A. 82:178–182PubMedCrossRefGoogle Scholar
  34. Geysen H. M., Meloen R. H., Barteling S. J. (1984) Proc. Natl. Acad. Sci. U. S. A. 81:3998–4002PubMedCrossRefGoogle Scholar
  35. Gold L., Alper J. (1997) Nat. Biotechnol. 15:297PubMedCrossRefGoogle Scholar
  36. Gonzalez-Navarro H., Mora P., Pastor M., Serrano L., Mingarro I., Perez-Paya E. (2000) Mol. Divers. 5:117–126PubMedCrossRefGoogle Scholar
  37. Gordon E. M., Gallop M. A., Patel D. V. (1996) Acc. Chem. Res. 29:144–154CrossRefGoogle Scholar
  38. Green D. R., Kroemer G. (2005) J. Clin. Invest. 115:2610–2617PubMedCrossRefGoogle Scholar
  39. Grotli M., Gotfredsen C. H., Rademann J., Buchardt J., Clark A. J., Duus J. O., et al. (2000) J. Comb. Chem. 2:108–119PubMedCrossRefGoogle Scholar
  40. Hioki H., Fukutaka M., Takahashi H., Kodama M., Kubo K., Ideta K., et al. (2004) Tetrahedron Lett. 45:7591–7594CrossRefGoogle Scholar
  41. Hioki H., Fukutaka M., Takahashi H., Kubo M., Matsushita K., Kodama M., et al. (2005) Tetrahedron 61:10643–10651CrossRefGoogle Scholar
  42. Ho Y., Gruhler A., Heilbut A., Bader G. D., Moore L., Adams S. L., et al. (2002) Nature 415:180–183PubMedCrossRefGoogle Scholar
  43. Houghten R. A. (1985) Proc. Natl. Acad. Sci. U. S. A. 82:5131–5135PubMedCrossRefGoogle Scholar
  44. Houghten R. A., Pinilla C., Blondelle S. E., Appel J. R., Dooley C. T., Cuervo J. H. (1991) Nature 354:84–86PubMedCrossRefGoogle Scholar
  45. Humet M., Carbonell T., Masip I., Sanchez-Baeza F., Mora P., Canton E., et al. (2003) J. Comb. Chem. 5:597–605PubMedCrossRefGoogle Scholar
  46. Kamal A., Reddy K. L., Devaiah V., Shankaraiah N., Reddy D. R. (2006) Mini Rev. Med. Chem. 6:53–69PubMedCrossRefGoogle Scholar
  47. Kappe C. O. (2000) Bioorg. Med. Chem. Lett. 10:49–51PubMedCrossRefGoogle Scholar
  48. Kempe M., Barany G. (1996) J. Am. Chem. Soc. 118:7083–7093CrossRefGoogle Scholar
  49. Lademann U., Cain K., Gyrd-Hansen M., Brown D., Peters D., Jaattela M. (2003) Mol. Cell Biol. 23:7829–7837PubMedCrossRefGoogle Scholar
  50. Lam K. S., Salmon S. E., Hersh E. M., Hruby V. J., Kazmierski W. M., Knapp R. J. (1991) Nature 354:82–84PubMedCrossRefGoogle Scholar
  51. Lam K. S., Lebl M., Krchnak V. (1997) Chem. Rev. 97:411–448PubMedCrossRefGoogle Scholar
  52. Lamping N., Hoess A., Yu B., Park T. C., Kirschning C. J., Pfeil D., et al. (1996) J. Immunol. 157:4648–4656PubMedGoogle Scholar
  53. Lavrik I. N., Golks A., Krammer P. H. (2005) J. Clin. Invest. 115:2665–2672PubMedCrossRefGoogle Scholar
  54. Lazo J. S., Wipf P. (2000) J. Pharmacol. Exp. Ther. 293:705–709PubMedGoogle Scholar
  55. Lefering R., Neugebauer E. A. M. (1995) Crit. Care Med. 23:1294–1303PubMedCrossRefGoogle Scholar
  56. Levin M., Quint P. A., Goldstein B. et al. (2000) Lancet 356:961–967PubMedCrossRefGoogle Scholar
  57. Li P., Nijhawan D., Budihardjo I., Srinivasula S. M., Ahmad M., Alnemri E. S., et al. (1997) Cell 91:479–489PubMedCrossRefGoogle Scholar
  58. Linton S. D., Karanewsky D. S., Ternansky R. J., Chen N., Guo X., Jahangiri K. G., et al. (2002a) Bioorg. Med. Chem. Lett. 12:2973–2975CrossRefGoogle Scholar
  59. Linton S. D., Karanewsky D. S., Ternansky R. J., Wu J. C., Pham B., Kodandapani L., et al. (2002b) Bioorg. Med. Chem. Lett. 12:2969–2971CrossRefGoogle Scholar
  60. Lo Conte L., Chothia C., Janin J. (1999) J. Mol. Biol. 285:2177–2198PubMedCrossRefGoogle Scholar
  61. Malet G., Martin A. G., Orzaez M., Vicent M. J., Masip I., Sanclimens G., et al. (2006) Cell Death Differ. 13:1523–1532PubMedCrossRefGoogle Scholar
  62. Martin A. G., Fearnhead H. O. (2002) J Biol. Chem. 277:50834–50841PubMedCrossRefGoogle Scholar
  63. Masquelin T., Sprenger D., Baer R., Gerber F., Mercadal Y. (1998) Helv. Chim. Acta 81:646–660CrossRefGoogle Scholar
  64. Massague J. (2004) Nature 432:298–306PubMedCrossRefGoogle Scholar
  65. McAllister L. A., McCormick R. A., Procter D. J. (2005) Tetrahedron 61:11527–11576CrossRefGoogle Scholar
  66. McMurray J. S. (1998) Biopolymers 47:405–411PubMedCrossRefGoogle Scholar
  67. Merrifield R. B. (1963) J. Am. Chem. Soc. 85:2149–2154CrossRefGoogle Scholar
  68. Mora P., Masip I., Cortés N., Marquina R., Merino R., Merino J., Carbonell T., Mingarro I., Messeguer A., Pérez-Payá E. (2005) J. Med. Chem. 48:1265–1268PubMedCrossRefGoogle Scholar
  69. Murray A. W. (1987) Nature. 327:14–15PubMedCrossRefGoogle Scholar
  70. Nefzi A., Ostresh J. M., Houghten R. A. (1997) Chem. Rev. 97:449–472PubMedCrossRefGoogle Scholar
  71. Nguyen J. T., Wells J. A. (2003) Proc. Natl. Acad. Sci. U. S. A. 100:7533–7538PubMedCrossRefGoogle Scholar
  72. Obrecht D., Villalgordo J. M. (1998) Solid-supported Combinatorial and Parallel Synthesis of Small-molecular-weight Compound Libraries. Pergamon Press Ltd., Oxford, UKGoogle Scholar
  73. Pacofsky G. J., Lackey K., Alligood K. J., Berman J., Charifson P. S., Crosby R. M., et al. (1998) J. Med. Chem. 41:1894–1908PubMedCrossRefGoogle Scholar
  74. Parent J. B., Gazzano-Santoro H., Wood D. M. et al.: (1992) Circ. Shock 38:63–73PubMedGoogle Scholar
  75. Pastor M. T., de la Paz M. L., Lacroix E., Serrano L., Perez-Paya E. (2002) Proc. Natl. Acad. Sci. U. S. A. 99:614–619PubMedCrossRefGoogle Scholar
  76. Pinilla C. A., Blanc J. R., Houghten R. A. (1992) Biotechniques 13:437–447Google Scholar
  77. Plunkett M. J., Ellman J. A. (1997) Sci. Am. 276:68–73PubMedCrossRefGoogle Scholar
  78. Porcheddu A., Giacomelli G., De Luca L., Ruda A. M. (2004) J. Comb. Chem. 6:105–111PubMedCrossRefGoogle Scholar
  79. Radomski M. W., Palmer R. M. J., Moncada S. (1990) Proc. Natl. Acad. Sci. U. S. A. 87:10043–10047PubMedCrossRefGoogle Scholar
  80. Rapp, W.: 1996, in G. Jung (ed.), Combinatorial Peptide and Nonpeptide Libraries, VCH, WeinheimGoogle Scholar
  81. Ravn J., Bourne G. T., Smythe M. L. (2005) J. Pept. Sci. 11:572–578PubMedCrossRefGoogle Scholar
  82. Renil M., Meldal M. (1996) Tetrahedron Lett. 37:6185–6188CrossRefGoogle Scholar
  83. Ried C., Wahl C., Miethke T., Wellnhofer G., Landgraf C., Schneider-Mergener J., et al. (1996) J. Biol. Chem. 271:28120–28127PubMedCrossRefGoogle Scholar
  84. Roice M., Pillai V. N. R. (2005) J. Polym. Sci. Part A, Polym. Chem. 43:4382–4392CrossRefGoogle Scholar
  85. Rombouts F. J. R., Fridkin G., Lubell W. D. (2005) J. Comb. Chem. 7:589–598PubMedCrossRefGoogle Scholar
  86. Rual J. F., Venkatesan K., Hao T., Hirozane-Kishikawa T., Dricot A., Li N., et al. (2005) Nature 437:1173–1178PubMedCrossRefGoogle Scholar
  87. Sáez-Llorens X., McCracken G. H. (1993) J. Pediator. 123:497–508PubMedCrossRefGoogle Scholar
  88. Salmon S. E., Lam K. S., Lebl M., Kandola A., Khattri P. S., Wade S., et al. (1993) Proc. Natl. Acad. Sci. U. S. A. 90:11708–11712PubMedCrossRefGoogle Scholar
  89. Sanchez-Martin R. M., Mittoo S., Bradley M. (2004) Curr. Topics Med. Chem. 4:653–669CrossRefGoogle Scholar
  90. Sandhu C., Slingerland J. (2000) Cancer Detect Prev. 24:107–118PubMedGoogle Scholar
  91. Schumann R. R., Latz E. (2000) Chem. Immunol. 74:42–60PubMedCrossRefGoogle Scholar
  92. Schumann R. R., Leong S. R., Flaggs G. W., Gray P. W., Wright S. D., Mathison J. C., et al. (1990) Science 249:1429–1431PubMedCrossRefGoogle Scholar
  93. Sebestyen F., Dibo G., Kovacs A., Furka A. (1993) Bioorg. Med. Chem. Lett. 3:413–418CrossRefGoogle Scholar
  94. Sebolt-Leopold J. S., English J. M. (2006) Nature 441:457–462PubMedCrossRefGoogle Scholar
  95. Senderowicz A. M. (2002) Oncologist 7:12–19PubMedCrossRefGoogle Scholar
  96. Senderowicz A. M. (2003) Cancer Biol. Ther. 2:S84–95PubMedGoogle Scholar
  97. Senderowicz A. M. (2005) Prog. Drug Res. 63:183–206PubMedGoogle Scholar
  98. Service R. F. (1996) Science 272:1266–1268PubMedCrossRefGoogle Scholar
  99. Shapiro G. I., Koestner D. A., Matranga C. B., Rollins B. J. (1999) Clin. Cancer Res. 5:2925–2938PubMedGoogle Scholar
  100. Shapiro L., Gelfand J. A. (1993) New Horiz 1:13–22PubMedGoogle Scholar
  101. Silverman, H. and Owen M. J.: 1998, Bactericidal Endotoxin in Human Disease. XOMA Ltd, pp. 1–28Google Scholar
  102. Stein L. D. (2004) Nature 431:915–916PubMedCrossRefGoogle Scholar
  103. Suffredini A. (1994) Crit. Care Med. 22:S12–18PubMedCrossRefGoogle Scholar
  104. Tamborini E., Bonadiman L., Greco A., Albertini V., Negri T., Gronchi A., et al. (2004) Gastroenterology 127:294–299PubMedCrossRefGoogle Scholar
  105. Ulevitch R. J., Tobias P. S. (1999) Curr. Opin. Immunol. 11:19–22PubMedCrossRefGoogle Scholar
  106. Vallance P. M. S. (1993) New Horiz. 1:77–86PubMedGoogle Scholar
  107. Poll T. Van der (2001) Lancet Infect. Dis. 1:165–174PubMedCrossRefGoogle Scholar
  108. Vicent M. J., Perez-Paya E. (2006) J. Med. Chem. 49:3763–3765PubMedCrossRefGoogle Scholar
  109. Wang X., Zhu S., Drozda M., Zhang W., Stavrovskaya I. G., Cattaneo E., et al. (2003) Proc. Natl. Acad. Sci. U. S. A. 100:10483–10487PubMedCrossRefGoogle Scholar
  110. Whitehead D. M., McKeown S. C., Routledge A. (2005) Comb. Chem. HTS 8:361–371Google Scholar
  111. Yu Z. R., Bradley M. (2002) Curr. Opin. Chem. Biol. 6:347–352PubMedCrossRefGoogle Scholar
  112. Yu X., Acehan D., Menetret J. F., Booth C. R., Ludtke S. J., Riedl S. J., et al. (2005) Structure (Camb.) 13:1725–1735CrossRefGoogle Scholar
  113. Zheng T. S., Hunot S., Kuida K., Momoi T., Srinivasan A., Nicholson D. W., et al. (2000) Nat. Med. 6:1241–1247PubMedCrossRefGoogle Scholar
  114. Ziegler E. J. (1991) N. Engl. J. Med. 324:429–436PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mar Orzáez
    • 1
  • Puig Mora
    • 1
  • Laura Mondragón
    • 1
  • Enrique Pérez-Payá
    • 1
    • 2
  • María J. Vicent
    • 1
  1. 1.Department of Medicinal ChemistryCentro de Investigación Príncipe FelipeValenciaSpain
  2. 2.Instituto de Biomedicina de Valencia (CSIC)ValenciaSpain

Personalised recommendations