Lithuanian Mathematical Journal

, Volume 58, Issue 1, pp 69–74 | Cite as

A note on characteristic functions and their extensions

Article
  • 29 Downloads

Abstract

Let f : ℝ ℂ be the characteristic function of a probability measure. We study the following question: Is it true that for any closed interval I on ℝ that does not contain the origin, there exists a characteristic function g coinciding with f on I but not on the whole ℝ?

Keywords

characteristic function density function entire function of exponential type probability measure 

MSC

30D15 42A38 42A82 60E10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.J. Benedetto and G. Zimmermann, Sampling multipliers and the Poisson summation formula, J. Fourier Anal. Appl., 3(5):505–523, 1997.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    G.B. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd ed., John Wiley & Sons, New York, 1999.MATHGoogle Scholar
  3. 3.
    J.R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations, Clarendon Press, Oxford, 1996.MATHGoogle Scholar
  4. 4.
    J.R. Higgins, G. Schmeisser, and J. Voss, The sampling theorem and several equivalent results in analysis, J. Comput. Anal. Appl., 2:333–371, 2000.MathSciNetMATHGoogle Scholar
  5. 5.
    B.Ya. Levin, Lectures on Entire Functions, Transl. Math. Monogr., Vol. 150, AMS, Providence, RI, 1996.Google Scholar
  6. 6.
    S. Norvidas, On extensions of characteristic functions, Lith. Math. J., 57(2):236–243, 2017.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    N.G. Ushakov, Selected Topics in Characteristic Functions, VSP, Utrecht, 1999.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and InformaticsVilnius UniversityVilniusLithuania

Personalised recommendations