Advertisement

Linear downscaling from MODIS to landsat: connecting landscape composition with ecosystem functions

  • Jiquan ChenEmail author
  • Pietro Sciusco
  • Zutao Ouyang
  • Rong Zhang
  • Geoffrey M. Henebry
  • Ranjeet John
  • David. P. Roy
Research Article
  • 95 Downloads

Abstract

Context

The open and free access to Landsat and MODIS products have greatly promoted scientific investigations on spatiotemporal change in land mosaics and ecosystem functions at landscape to regional scales. Unfortunately, there is a major mismatch in spatial resolution between MODIS products at coarser resolution (≥ 250 m) and landscape structure based on classified Landsat scenes at finer resolution (30 m).

Objectives

Based on practical needs for downscaling popular MODIS products at 500 m resolution to match classified land cover at Landsat 30 m resolution, we proposed an innovative modelling approach so that landscape structure and ecosystem functions can be directly studied for their interconnections. As a proof-of-concept of our downscaling approach, we selected the watershed of the Kalamazoo River in southwestern Michigan, USA as the testbed.

Methods

MODIS products for three fundamental variables of ecosystem function are downscaled to ensure the approach can be extrapolated to multiple functional measurements. They are blue-sky albedo (0–1), evapotranspiration (ET, mm), and gross primary production (GPP, Mg C ha−1 year−1). An object-oriented classification of Landsat images in 2011 was processed to generate a land cover map for landscape structure. The downscaling model was tested for the five Level IV ecoregions within the watershed.

Results

We achieved satisfactory downscaling models for albedo, ET, and GPP for all five ecoregions. The adjusted R2 was > 0.995 for albedo, 0.915–0.997 for ET, and 0.902–0.962 for GPP. The estimated albedo, ET, and GPP values appear different in the region. The estimated albedo was the lowest for water (0.076–0.107) and the highest for cropland (0.166–0.172). Estimated ET was the highest for the built-up cover type (525.6–687.1 mm) and the lowest for forest (209.7–459.7 mm). The estimated GPP was the highest for the build-up cover type (8.65–9.85 Mg C ha−1 year−1) and the lowest for forest.

Conclusions

Estimated values for albedo, ET, and GPP appear reasonable for their ranges in the Kalamazoo River region and are consistent with values reported in the literature. Despite these promising results, the downscaling approach relies on strong assumptions and can carry substantial uncertainty. It is only valid at a spatial scale where similar climate, soil, and landforms exist (i.e., values in isolated patches of the same cover type are similar). Plausibly, the uncertainties associated with each estimation, as well as the model residuals, can be explored for other pattern-process relationships within the landscape.

Keywords

Downscaling MODIS Landsat GPP ET Albedo Kalamazoo River watershed 

Notes

Acknowledgements

This study was supported, in part, by the NASA Carbon Cycle & Ecosystems program (NNX17AE16G), the Great Lakes Bioenergy Research Center funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Numbers DE-SC0018409 and DE-FC02-07ER64494; and the Long-term Ecological Research Program (DEB 1637653) at the Kellogg Biological Station, and the NASA Science of Terra and Aqua program (NNX14AJ32G). We thank the fruitful discussion at LEES Lab meetings where several members made constructive suggestions for model development. Isabel Arroca assisted in formatting the references. The reviews from two anonymous reviewers helped improving the quality of this manuscript.

References

  1. Abraha M, Chen J, Chu H et al (2015) Evapotranspiration of annual and perennial biofuel crops in a variable climate. Glob Chang Biol Bioenergy 7(6):1344–1356CrossRefGoogle Scholar
  2. Alberti M, Asbjornsen H, Baker LA et al (2011) Research on coupled human and natural systems (CHANS): approach, challenges, and strategies. Bull Ecol Soc Am 92:218–228CrossRefGoogle Scholar
  3. Anderson JR, Hardy EE, Roach JT et al (1976) A land use and land cover classification system for use with remote sensor data. Prof Pap.  https://doi.org/10.3133/pp964 CrossRefGoogle Scholar
  4. Atkinson PM (2013) Downscaling in remote sensing. Int J Appl Earth Obs Geoinf 22:106–114CrossRefGoogle Scholar
  5. Barnes CA, Roy DP (2010) Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability. J Geophys Res 115:G04033.  https://doi.org/10.1029/2010JG001428 CrossRefGoogle Scholar
  6. Bass DG (2009) Inferring dissolved phosphorus cycling in a TMDL watershed using biogeochemistry and mixed linear models. PhD disertation, Michigan State University, East Lansing, MichiganGoogle Scholar
  7. Bonan GB (1997) Effects of land use on the climate of the United States. Clim Change 37(3):449–486CrossRefGoogle Scholar
  8. Bresee MK, Le Moine J, Mather S et al (2004) Disturbance and landscape dynamics in the Chequamegon National Forest Wisconsin, USA, from 1972 to 2001. Landsc Ecol 19(3):291–309CrossRefGoogle Scholar
  9. Campbell GS, Norman JM (1998) Introduction to environmental biophysics. Springer, New York, p 286pCrossRefGoogle Scholar
  10. Chapman KA, Brewer R (2008) Prairie and Savanna in southern lower Michigan: history, classification, ecology. Michigan Bot 47:1–48Google Scholar
  11. Chen J (1991) Edge effects: microclimatic pattern and biological responses in old-growth Douglas-fir forests. PhD dissertation, University of Washington, Seattle, WAGoogle Scholar
  12. Chen J, Wan S, Henebry G et al (eds) (2013) Dryland east Asia: land dynamics amid social and climate change. DE GRUYTER, BerlinGoogle Scholar
  13. Chrysoulakis N, Mitraka Z, Gorelick N (2018) Exploiting satellite observations for global surface albedo trends monitoring. Theor Appl Climatol.  https://doi.org/10.1007/s00704-018-2663-6 CrossRefGoogle Scholar
  14. Cressie N, Wikle CK (2015) Statistics for spatio-temporal data. Wiley, New Jersey, p 624pGoogle Scholar
  15. Di Giulio M, Holderegger R, Tobias S (2009) Effects of habitat and landscape fragmentation on humans and biodiversity in densely populated landscapes. J Environ Manage 90:2959–2968PubMedCrossRefPubMedCentralGoogle Scholar
  16. Dieye AM, Roy DP, Hanan NP et al (2012) Sensitivity analysis of the GEMS soil organic carbon model to land cover land use classification uncertainties under different climate scenarios in Senegal. Biogeosciences 9:631–648CrossRefGoogle Scholar
  17. Drusch M, Del Bello U, Carlier S et al (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36CrossRefGoogle Scholar
  18. Dwyer JL, Roy DP, Saue B et al (2018) Analysis ready data enabling analysis of the Landsat archive. Remote Sens 10(1363):19.  https://doi.org/10.3390/rs10091363 CrossRefGoogle Scholar
  19. Fensholt R, Proud SR (2012) Evaluation of earth observation based global long term vegetation trends—comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ 119:131–147CrossRefGoogle Scholar
  20. Fisher F Peter, Langford Mitchel (1996) Modeling sensitivity to accuracy in classified imagery: a study of areal interpolation by dasymetric mapping. Prof Geog 48(3):299–309CrossRefGoogle Scholar
  21. Fongers D (2008) Kalamazoo River watershed hydrologic study. Michigan Department of Environmental Quality, Lansing, MI, p 67pGoogle Scholar
  22. Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80(1):185–201CrossRefGoogle Scholar
  23. Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge, p 217pCrossRefGoogle Scholar
  24. Franklin JF, Forman RTT (1987) Creating landscape patterns by forest cutting: ecological consequences and principles. Landsc Ecol 1:5–18CrossRefGoogle Scholar
  25. Friedl MA, Sulla-Menashe D, Tan B et al (2010) MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114:168–182CrossRefGoogle Scholar
  26. Giglio L, Boschetti L, Roy DP et al (2018) The collection 6 MODIS burned area mapping algorithm and product. Remote Sens Environ 217:72–85PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gitelson AA, Peng Y, Masek JG et al (2012) Remote estimation of crop gross primary production with Landsat data. Remote Sens Environ 121:404–414CrossRefGoogle Scholar
  28. Goodin DG, Henebry GM (1998) Seasonality of finely-resolved spatial structure of NDVI and its component reflectances in tallgrass prairie. Int J Remote Sens 19(16):3213–3220CrossRefGoogle Scholar
  29. Hansen MC, Loveland TR (2012) A review of large area monitoring of land cover change using Landsat data. Remote Sens Environ 122:66–74CrossRefGoogle Scholar
  30. Hargrove WW, Pickering J (1992) Pseudoreplication: a sine qua non for regional ecology. Landsc Ecol 6(4):251–258CrossRefGoogle Scholar
  31. Helder D, Markham B, Morfitt R et al (2018) Observations and recommendations for the calibration of Landsat 8 OLI and Sentinel 2 MSI for improved data interoperability. Remote Sens 10(9):1340.  https://doi.org/10.3390/rs10091340 CrossRefGoogle Scholar
  32. Henebry GM (1993) Detecting change in grasslands using measures of spatial dependence with Landsat TM data. Remote Sen Environ 46(2):223–234CrossRefGoogle Scholar
  33. Jia P, Gaughan AE (2016) Dasymetric modeling: a hybrid approach using land cover and tax parcel data for mapping population in Alachua County, Florida. Appl Geogr 66:100–108CrossRefGoogle Scholar
  34. John R, Chen J, Kim Y et al (2016) Differentiating anthropogenic modification and precipitation-driven change on vegetation productivity on the Mongolian Plateau. Landsc Ecol 31:547–566CrossRefGoogle Scholar
  35. Justice CO, Giglio L, Korontzi S et al (2002) An overview of MODIS land data processing and product status. Remote Sens Environ 83:3–15CrossRefGoogle Scholar
  36. Kennedy RE, Andréfouët S, Cohen WB et al (2014) Bringing an ecological view of change to Landsat-based remote sensing. Front Ecol Environ 12:339–346CrossRefGoogle Scholar
  37. Kottek M, Grieser J, Beck C et al (2006) World maps of Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263CrossRefGoogle Scholar
  38. Krehbiel CP, Zhang X, Henebry GM (2017) Impacts of thermal time on land surface phenology in urban areas. Remote Sens 9(5):499.  https://doi.org/10.3390/rs9050499 CrossRefGoogle Scholar
  39. LeMoine JM, Chen J (2003) Placing our research objectives and results in time and space. Acta Phytoecol Sin 27:1–10Google Scholar
  40. Levin SA (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73(6):1943–1967CrossRefGoogle Scholar
  41. McFeeters S (1996) The use of Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17:1425–1432CrossRefGoogle Scholar
  42. Mills K, Schillereff D, Saulnier-Talbot É et al (2017) Deciphering long-term records of natural variability and human impact as recorded in lake sediments: a palaeolimnological puzzle. Wiley Interdiscip Rev Water 4:e1195.  https://doi.org/10.1002/wat2.1195 CrossRefGoogle Scholar
  43. Moon M, Zhang X, Henebry GM et al (2019) Long-term continuity in land surface phenology measurements: a comparative assessment of the MODIS land cover dynamics and VIIRS land surface phenology products. Remote Sens Environ 226:74–92CrossRefGoogle Scholar
  44. Mu Q, Heinsch FA, Zhao M et al (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111:519–536CrossRefGoogle Scholar
  45. Nagle NN, Buttenfield BP, Leyk S, Spielman S (2014) Dasymetric modeling and uncertainty. Ann Am Assoc Geogr 104(1):80–95CrossRefGoogle Scholar
  46. O’Loughlin FE, Paiva RCD, Durand M et al (2016) A multi-sensor approach towards a global vegetation corrected SRTM DEM product. Remote Sens Environ 182:49–59CrossRefGoogle Scholar
  47. Omernik JM, Griffith GE (2014) Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ Manage 54(6):1249–1266PubMedCrossRefPubMedCentralGoogle Scholar
  48. Papale D, Black TA, Carvalhais N et al (2015) Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks. J Geophys Res Biogeosci 120(10):1941–1957CrossRefGoogle Scholar
  49. Petrov A (2012) One hundred years of dasymetric mapping: back to the origin. Cartogr J 49(3):256–264CrossRefGoogle Scholar
  50. Plourde JD, Pijanowski BC, Pekin BK (2013) Evidence for increased monoculture cropping in the Central United States. Agric Ecosyst Environ 165:50–59CrossRefGoogle Scholar
  51. Robinson NP, Allred BW, Smith WK et al (2018) Terrestrial primary production for the conterminous United States derived from Landsat 30 m and MODIS 250 m. Remote Sens Ecol Conserv 4(3):264–280CrossRefGoogle Scholar
  52. Rodriguez-Iturbe I, D’Odorico P, Rinaldo A (1998) Configuration entropy of fractal landscapes. Geophys Res Lett 25(7):1015–1018CrossRefGoogle Scholar
  53. Roy DP, Wulder MA, Loveland TR et al (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172CrossRefGoogle Scholar
  54. Saunders SC, Chen J, Drummer TD et al (2005) Identifying scales of pattern in ecological data: a comparison of lacunarity, spectral and wavelet analyses. Ecol Complex 2(1):87–105CrossRefGoogle Scholar
  55. Schaaf CB, Gao F, Strahler AH et al (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ 83(1–2):135–148CrossRefGoogle Scholar
  56. Schaetzl RJ, Darden JT, Brandt DS (2009) Michigan geography and geology. Pearson Learning SolutionsGoogle Scholar
  57. Semmens KA, Anderson MC, Kustas WP et al (2016) Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens Environ 185:155–170CrossRefGoogle Scholar
  58. Stoorvogel JJ, Bakkenes M, Temme AJAM et al (2017) S-World: a global soil map for environmental modelling. L Degrad Dev 28:22–33CrossRefGoogle Scholar
  59. Sun G, Alstad K, Chen J et al (2011) A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology 4(2):245–255CrossRefGoogle Scholar
  60. Trlica A, Hutyra LR, Schaaf CL et al (2017) Albedo, land cover, and daytime surface temperature variation across an urbanized landscape. Earth’s Futur 5:1084–1101CrossRefGoogle Scholar
  61. Tucker CJ, Pinzon JE, Brown ME et al (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26(20):4485–4498CrossRefGoogle Scholar
  62. Turner MG, Gardner RH (2015) Landscape ecology in theory and practice: pattern and process, 2nd edn. Springer, New York, p 482pGoogle Scholar
  63. Vermote EF, El Saleous NZ, Justice CO (2002) Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens Environ 83:97–111CrossRefGoogle Scholar
  64. Wan Z (2013) MODIS land surface temperature products users’ guide. Institute for Computational Earth System Science. University of California, Santa Barbara, CAGoogle Scholar
  65. Wang Z, Schaaf CB, Sun Q et al (2017) Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product. Int J Appl Earth Obs Geoinf 59:104–117CrossRefGoogle Scholar
  66. Wang Z, Schaaf CB, Sun Q et al (2018) Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products. Remote Sens Environ 207:50–64CrossRefGoogle Scholar
  67. Wolfe R, Nishihama M, Fleig A et al (2002) Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens Environ 83:31–49CrossRefGoogle Scholar
  68. Wu J, Hobbs RJ (eds) (2007) Key topics in landscape ecology. Cambridge University Press, Cambridge, p 297pGoogle Scholar
  69. Wulder MA, Coops NC, Roy DP et al (2018) Land Cover 2.0. Int J Remote Sens 39(12):4254–4284CrossRefGoogle Scholar
  70. Wulder MA, Loveland TR, Roy DP et al (2019) Current status of Landsat program, science, and applications. Remote Sens Environ 224:127–147CrossRefGoogle Scholar
  71. Xiao X, Hollinger D, Aber J et al (2004) Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens Environ 89:519–534CrossRefGoogle Scholar
  72. Yang W, Shabanov NV, Huang D et al (2006) Analysis of leaf area index products from combination of MODIS Terra and Aqua data. Remote Sens Environ 104(3):297–312CrossRefGoogle Scholar
  73. Yao Y, Liang S, Li X et al (2017) Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method. J Hydrol 553:508–526CrossRefGoogle Scholar
  74. Yuan W, Liu S, Yu G et al (2010) Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens Environ 114(7):1416–1431CrossRefGoogle Scholar
  75. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Inl J Remote Sens 24(3):583–594CrossRefGoogle Scholar
  76. Zhang X, Friedl MA, Schaaf CB et al (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84(3):471–475CrossRefGoogle Scholar
  77. Zhang XY, Liu L, Liu Y et al (2018) Generation and evaluation of the VIIRS land surface phenology product. Remote Sens Environ 216:212–229CrossRefGoogle Scholar
  78. Zhang HK, Roy DP (2017) Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens Environ 197:15–34CrossRefGoogle Scholar
  79. Zhao M, Heinsch FA, Nemani RR et al (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95(2):164–176CrossRefGoogle Scholar
  80. Zhao M, Running SW, Nemani RR (2006) Sensitivity of moderate resolution imaging spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J Geophys Res Biogeosci.  https://doi.org/10.1029/2004jg000004 CrossRefGoogle Scholar
  81. Zheng D, Rademacher J, Chen J et al (2004) Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens Environ 93(3):402–411CrossRefGoogle Scholar
  82. Zhou H, Liang S, He T et al (2019) Evaluating the spatial representativeness of the MODerate Resolution Image Spectroradiometer albedo product (MCD43) at AmeriFlux sites. Remote Sens 11(5):547.  https://doi.org/10.3390/rs11050547 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jiquan Chen
    • 1
    • 2
    Email author
  • Pietro Sciusco
    • 1
    • 2
  • Zutao Ouyang
    • 1
    • 2
  • Rong Zhang
    • 2
  • Geoffrey M. Henebry
    • 1
    • 2
  • Ranjeet John
    • 3
  • David. P. Roy
    • 1
    • 2
  1. 1.Department of Geography, Environment, and Spatial SciencesMichigan State UniversityEast LansingUSA
  2. 2.Center for Global Change and Earth ObservationsMichigan State UniversityEast LansingUSA
  3. 3.Department of BiologyUniversity of South DakotaVermillionUSA

Personalised recommendations