Advertisement

The risk of ignoring fear: underestimating the effects of habitat loss and fragmentation on biodiversity

  • Lisa TeckentrupEmail author
  • Stephanie Kramer-Schadt
  • Florian Jeltsch
Research Article

Abstract

Context

Habitat loss and fragmentation threaten species not only through structural landscape changes and resource reduction, but also through modifications to species’ interactions. In particular, the observed consequences of landscape changes for predator–prey interactions often lack a clear pattern, indicating a range of complex behavioral adaptations and interactions. One potentially important contributing factor shaping these consequences is perceived predation risk and hence fear, which is rarely explicitly addressed in studies on habitat modification.

Objectives

We investigated how fear changes prey community structures under habitat loss and fragmentation and identified habitat properties driving these changes.

Methods

We applied a spatially-explicit, individual-based model which simulates home range formation of a mammalian prey community based on food availability and perceived predation risk. With the model we predicted prey community structures under different landscape scenarios.

Results

Fear intensified the negative effects of habitat loss and fragmentation on prey communities, causing a non-proportional diversity loss of up to 30%. Shifts in community composition from large to small animals were reinforced. The highest prey diversity was supported in landscapes with non-fragmented safe areas. Our findings highlight the importance of fear in shaping prey community structures under conditions of landscape change.

Conclusions

Our modelling approach addresses the mechanisms that link individual space use with community structure. It reveals the key role played by the spatial distribution of safe patches in mitigating the negative effects of landscape changes. Thereby, it supports modern conservation efforts that go beyond single-species approaches by taking changes in community structure into account.

Keywords

Predator–prey interactions Fragmentation Habitat loss Landscape of fear Biodiversity Community 

Notes

Acknowledgements

We thank Volker Grimm for comments on an earlier version of this manuscript. This work was supported by Deutsche Forschungsgemeinschaft in the framework of the BioMove Research Training Group (DFG-GRK 2118/1).

Supplementary material

10980_2019_922_MOESM1_ESM.docx (173 kb)
Supplementary material 1 (DOCX 174 kb)
10980_2019_922_MOESM2_ESM.docx (439 kb)
Supplementary material 2 (DOCX 439 kb)

References

  1. Abrams PA (1991) Strength of indirect effects generated by optimal foraging. Oikos 62:167–176CrossRefGoogle Scholar
  2. Bakker ES, Ritchie ME, Olff H, Milchunas DG, Knops JMH (2006) Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol Lett 9:780–788.  https://doi.org/10.1111/j.1461-0248.2006.00925.x CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  4. Battin J (2004) When good animals love bad habitats: ecological traps and the conservation of animal populations. Conserv Biol 18:1482–1491CrossRefGoogle Scholar
  5. Best LB (1986) Conservation tillage: ecological traps for nesting birds? Wildl Soc Bull 14:308–317Google Scholar
  6. Bragagnolo C, Nogueira AA, Pinto-da-Rocha R, Pardini R (2007) Harvestmen in an Atlantic forest fragmented landscape: evaluating assemblage response to habitat quality and quantity. Biol Conserv 139:389–400CrossRefGoogle Scholar
  7. Brooks TM, Mittermeier RA, Mittermeier CG, Da Fonseca, GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor (2002). Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923.  https://doi.org/10.1046/j.1523-1739.2002.00530.x CrossRefGoogle Scholar
  8. Brown JS (1988) Patch use as an indicator of habitat preference, predation risk, and competition. Behav Ecol Sociobiol 22:37–47CrossRefGoogle Scholar
  9. Buchmann CM, Schurr FM, Nathan R, Jeltsch F (2011) An allometric model of home range formation explains the structuring of animal communities exploiting heterogeneous resources. Oikos 120:106–118CrossRefGoogle Scholar
  10. Buchmann CM, Schurr FM, Nathan R, Jeltsch F (2012) Movement upscaled—the importance of individual foraging movement for community response to habitat loss. Ecography (Cop) 35:436–445CrossRefGoogle Scholar
  11. Buchmann CM, Schurr FM, Nathan R, Jeltsch F (2013) Habitat loss and fragmentation affecting mammal and bird communities—the role of interspecific competition and individual space use. Ecol Inform 14:90–98CrossRefGoogle Scholar
  12. Caley MJ, St John J (1996) Refuge availability structures assemblages of tropical reef fishes. J Anim Ecol 65:414–428CrossRefGoogle Scholar
  13. Chalfoun AD, Thompson FR, Ratnaswamy MJ (2002) Nest predators and fragmentation: a review and meta-analysis. Conserv Biol 16:306–318CrossRefGoogle Scholar
  14. Ciuti S, Northrup JM, Muhly TB, Simi S, Musiani M, Pitt JA, Boyce MS (2012) Effects of humans on behaviour of wildlife exceed those of natural predators in a landscape of fear. PLoS ONE 7:e50611.  https://doi.org/10.1371/journal.pone.0050611 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Core Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  16. Creel S, Christianson D (2008) Relationships between direct predation and risk effects. Trends Ecol Evol 23:194–201PubMedPubMedCentralCrossRefGoogle Scholar
  17. Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400:563–566CrossRefGoogle Scholar
  18. Díaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ, Ewers RM, Jordano P, Pearse WD (2013) Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol Evol 3:2958–2975.  https://doi.org/10.1002/ece3.601 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Doherty TS, Dickman CR, Nimmo DG, Ritchie EG (2015) Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances. Biol Conserv 190:60–68CrossRefGoogle Scholar
  20. Donelan SC, Grabowski JH, Trussell GC (2017) Refuge quality impacts the strength of nonconsumptive effects on prey. Ecology 98:403–411PubMedCrossRefPubMedCentralGoogle Scholar
  21. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663CrossRefGoogle Scholar
  23. Fardila D, Kelly LT, Moore JL, McCarthy MA (2017) A systematic review reveals changes in where and how we have studied habitat loss and fragmentation over 20 years. Biol Conserv 212:130–138CrossRefGoogle Scholar
  24. Fleishman E, Ray C, Sjögren-Gulve P, Boggs CL, Murphy DD (2002) Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716.  https://doi.org/10.1046/j.1523-1739.2002.00539.x CrossRefGoogle Scholar
  25. Gates JE, Gysel LW (1978) Avian nest dispersion and fledging success in field-forest ecotones. Ecology 59:871–883CrossRefGoogle Scholar
  26. Gilliam JF, Fraser DF (1987) Habitat selection under predation hazard: test of a model with foraging minnows. Ecology 68:1856–1862PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gorini L, Linnell JDC, May R, Panzacchi M, Boitani L, Odden M, Nilsen EB (2012) Habitat heterogeneity and mammalian predator–prey interactions. Mamm Rev 42:55–77.  https://doi.org/10.1111/j.1365-2907.2011.00189.x CrossRefGoogle Scholar
  28. Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse G, Huth A, Jepsen JU, Jørgensen C, Mooij WM, Müller B, Pe’er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Rüger N, Strand E, Souissi S, Stillman RA, Vabø R, Visser U, De Angelis DL, (2006) A standard protocol for describing individual-based and agent-based models. Ecol Modell 198:115–126.  https://doi.org/10.1016/j.ecolmodel.2006.04.023 CrossRefGoogle Scholar
  29. Grimm V, Berger U, DeAngelis DL, Polhill, JG, Giske, J, Railsback SF (2010) The ODD protocol: a review and first update. Ecol Modell 221:2760–2768.  https://doi.org/10.1016/j.ecolmodel.2010.08.019 CrossRefGoogle Scholar
  30. Hale R, Swearer SE (2016) Ecological traps: current evidence and future directions. Proc R Soc Biol Sci 283:20152647CrossRefGoogle Scholar
  31. Hanski I (2011) Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40:248–255PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hanski I (2015) Habitat fragmentation and species richness. J Biogeogr 42:989–993CrossRefGoogle Scholar
  33. Hargrove WW, Hoffman FM, Schwartz PM (2002) A fractal landscape realizer for generating synthetic maps. Conserv Ecol 6:1–11Google Scholar
  34. Haskell JP, Ritchie ME, Olff H (2002) Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges. Nature 418:527–530PubMedCrossRefPubMedCentralGoogle Scholar
  35. Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251.  https://doi.org/10.1023/B:BIOC.0000004319.91643.9e CrossRefGoogle Scholar
  36. Hixon M, Beets JP (1993) Predation, prey refuges, and the structure of coral-reef fish assemblages. Ecol Monogr 63:77–101CrossRefGoogle Scholar
  37. Körner K, Jeltsch F (2008) Detecting general plant functional type responses in fragmented landscapes using spatially-explicit simulations. Ecol Modell 210:287–300CrossRefGoogle Scholar
  38. Kuijper DPJ, Sahlén E, Elmhagen B, Chamaillé-Jammes S, Sand H, Lone K, Cromsigt JPGM (2016) Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes. Proc R Soc London B Biol Sci 283:20161625.  https://doi.org/10.1098/rspb.2016.1625 CrossRefGoogle Scholar
  39. Lahti DC (2001) The “edge effects on nest predation” hypothesis after twenty years. Biol Conserv 99:365–374CrossRefGoogle Scholar
  40. Laurance WF, Useche CD, Rendeiro J, Kalka M, Bradshaw CJA, Sloan SP, Laurance SG, Campbell M, Abernethy K, Alvarez P, Arroyo-Rodriguez V, Ashton P, Benítez-Malvido J, Blom A, Bobo KS, Cannon CH, Cao M, Carroll R, Chapman C, Coates R, Cords M, Danielsen F, De Dijn B, Dinerstein E, Donnelly MA, Edwards D, Edwards F, Farwig N, Fashing P, Forget PM, Foster M, Gale G, Harris D, Harrison R, Hart J, Karpanty S, John Kress W, Krishnaswamy J, Logsdon W, Lovett J, Magnusson W, Maisels F, Marshall AR, McClearn D, Mudappa D, Nielsen MR, Pearson R, Pitman N, Van Der Ploeg J, Plumptre A, Poulsen J, Quesada M, Rainey H, Robinson D, Roetgers C, Rovero F, Scatena F, Schulze C, Sheil D, Struhsaker T, Terborgh J, Thomas D, Timm R, Nicolas Urbina-Cardona J, Vasudevan K, Joseph Wright S, Carlos Arias-G J, Arroyo L, Ashton M, Auzel P, Babaasa D, Babweteera F, Baker P, Banki O, Bass M, Bila-Isia I, Blake S, Brockelman W, Brokaw N, Brühl CA, Bunyavejchewin S, Chao JT, Chave J, Chellam R, Clark CJ, Clavijo J, Congdon R, Corlett R, Dattaraja HS, Dave C, Davies G, De Mello Beisiegel B, De Nazaré Paes Da Silva R, Di Fiore A, Diesmos A, Dirzo R, Doran-Sheehy D, Eaton M, Emmons, L, Estrada A, Ewango C, Fedigan L, Feer F, Fruth B, Giacalone Willis J, Goodale U, Goodman S, Guix JC, Guthiga P, Haber W, Hamer K, Herbinger I, Hill J, Huang Z, Fang Sun I, Ickes K, Itoh A, Ivanauskas N, Jackes B, Janovec J, Janzen D, Jiangming M, Jin C, Jones T, Justiniano H, Kalko E, Kasangaki A, Killeen T, King HB, Klop E, Knott C, Koné I, Kudavidanage E, Lahoz Da Silva Ribeiro J, Lattke J, Laval R, Lawton R, Leal M, Leighton M, Lentino M, Leonel C, Lindsell J, Ling-Ling L, Eduard Linsenmair K, Losos E, Lugo A, Lwanga J, MacK AL, Martins M, Scott McGraw W, McNab R, Montag L, Myers Thompson J, Nabe-Nielsen J, Nakagawa M, Nepal S, Norconk M, Novotny V, O’Donnell S, Opiang M, Ouboter, P, Parker K, Parthasarathy N, Pisciotta K, Prawiradilaga D, Pringle C, Rajathurai S, Reichard U, Reinartz G, Renton K, Reynolds G, Reynolds V, Riley E, Rödel MO, Rothman J, Round P, Sakai S, Sanaiotti T, Savini T, Schaab G, Seidensticker J, Siaka A, Silman MR, Smith TB, De Almeida SS, Sodhi N, Stanford C, Stewart K, Stokes E, Stoner KE, Sukumar R, Surbeck M, Tobler M, Tscharntke T, Turkalo A, Umapathy G, Van Weerd M, Vega Rivera J, Venkataraman M, Venn L, Verea C, Volkmer De Castilho C, Waltert M, Wang B, Watts D, Weber W, West P, Whitacre D, Whitney K, Wilkie D, Williams S, Wright DD, Wright P, Xiankai L, Yonzon P, Zamzani F (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489: 290–293.  https://doi.org/10.1038/nature11318 CrossRefGoogle Scholar
  41. Lima SL (1998) Nonlethal effects in the ecology of predator–prey interactions. Bioscience 48:25–34CrossRefGoogle Scholar
  42. Lima SL, Bednekoff PA (1999) Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. Am Nat 153:649–659PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640CrossRefGoogle Scholar
  44. Mech SG, Zollner PA (2002) Using body size to predict perceptual range 98:47–52Google Scholar
  45. Melián CJ, Bascompte J (2002) Food web structure and habitat loss. Ecol Lett 5:37–46CrossRefGoogle Scholar
  46. Mortelliti A, Amori G, Boitani L (2010) The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163:535–547PubMedCrossRefPubMedCentralGoogle Scholar
  47. Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, MacE GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50.  https://doi.org/10.1038/nature14324 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) vegan: Community Ecology Package, R package version 2.4-4Google Scholar
  49. Olff H, Ritchie ME (1998) Importance of herbivore type and scale. Trends Ecol Evol 13:261–265PubMedCrossRefPubMedCentralGoogle Scholar
  50. Orrock JL, Grabowski JH, Pantel JH, Peacor SD, Peckarsky BL, Sih A, Werner EE (2008) Consumptive and nonconsumptive effects of predators on metacommunities of competing prey. Ecology 89:2426–2435PubMedCrossRefPubMedCentralGoogle Scholar
  51. Orrock JL, Preisser EL, Grabowski JH, Trussell GC (2013) The cost of safety: refuges increase the impact of predation risk in aquatic systems. Ecology 94:573–579PubMedCrossRefPubMedCentralGoogle Scholar
  52. Paton PWC (1994) The effect of edge on avian nest success: how strong is the evidence? Conserv Biol 8:17–26CrossRefGoogle Scholar
  53. Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86:501–509CrossRefGoogle Scholar
  54. Preisser EL, Orrock JL (2012) The allometry of fear: interspecific relationships between body size and response to predation risk. Ecosphere 3:77CrossRefGoogle Scholar
  55. Prevedello JA, Gotelli NJ, Metzger JP (2016) A stochastic model for landscape patterns of biodiversity. Ecol Monogr 86:462–479CrossRefGoogle Scholar
  56. Ries L, Fletcher RJ, Battin J, Sisk TD (2004) ecological responses to habitat edges: mechanisms, models, and variability explained. Annu Rev Ecol Syst 35:491–522CrossRefGoogle Scholar
  57. Ripple WJ, Beschta RL (2004) Wolves and the ecology of fear: can predation risk structure ecosystems? Bioscience 54:755CrossRefGoogle Scholar
  58. Ripple WJ, Larsen EJ, Renkin RA, Smith DW (2001) Trophic cascades among wolves, elk and aspen on Yellowstone National Park’s northern range. Biol Conserv 102:227–234CrossRefGoogle Scholar
  59. Robertson BA, Hutto RL (2006) A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87:1075–1085PubMedCrossRefPubMedCentralGoogle Scholar
  60. Ryall KL, Fahrig L (2006) Response of predators to loss and fragmentation of prey habitat: a review of theory. Ecology 87:1086–1093PubMedCrossRefGoogle Scholar
  61. Saupe D (1988) Algorithms for random fractals. In: Peitgen H-O, Saupe D (eds) The science of fractal images. Springer, New York, pp 71–136CrossRefGoogle Scholar
  62. Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues ASL, Stuart SN, Temple HJ, Baillie J, Boitani L, Jr, TEL, Mittermeier RA, Smith AT, Absolon D, Aguiar JM, Amori G, Bakkour N, Baldi R, Berridge RJ, Bielby J, Black PA, Blanc JJ, Brooks TM, Burton JA, Butynski TM, Catullo G, Garshelis DL, Gates C, Gimenez-dixon M, Gonzalez S, Gonzalez-maya JF, Good TC, Hammerson G, Hammond PS, Happold D, Happold M, Hare J, Harris RB, Hawkins CE, Haywood M, Heaney LR, Hedges S, Helgen KM, Hilton-taylor C, Hussain SA, Ishii N, Jefferson TA, Jenkins RKB, Johnston CH, Keith M, Kingdon J, Knox DH, Kovacs KM, Langhammer P, Leus K, Lewison R, Lichtenstein G, Lowry LF, Macavoy Z, Medellín RA, Medici P, Mills G, Moehlman PD, Molur S, Mora A, Nowell K, Oates JF, Olech W, Oliver WRL, Oprea M, Patterson BD, Perrin WF, Polidoro BA, Pollock C, Powel A, Protas Y, Racey P, Ragle J, Ramani P, Rathbun G, Reeves RR, Reilly SB, Iii JER, Rondinini C, Rosell-ambal RG, Rulli M, Rylands AB, Savini S, Schank CJ, Sechrest W, Self-sullivan C, Shoemaker A, Sillero-zubiri C, De Silva N, Smith DE, Taylor BL, Timmins R, Tirira DG, Tognelli MF, Tsytsulina K, Veiga LM, Vié J, Williamson EA, Wyatt SA, Xie Y, Young BE (2008) The status of the World’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–30PubMedCrossRefGoogle Scholar
  63. Schlaepfer MA, Runge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends Ecol Evol 17:474–480CrossRefGoogle Scholar
  64. Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163CrossRefGoogle Scholar
  65. Schneider MF (2001) Habitat loss, fragmentation and predator impact: spatial implications for prey conservation. J Appl Ecol 38:720–735CrossRefGoogle Scholar
  66. Spencer RJ, Cavanough VC, Baxter GS, Kennedy MS (2005) Adult free zones in small mammal populations: response of Australian native rodents to reduced cover. Austral Ecol 30:868–876CrossRefGoogle Scholar
  67. Summerville KS, Crist TO (2004) Contrasting effects of habitat quantity and quality on moth communities in fragmented landscapes. Ecography (Cop) 27:3–12CrossRefGoogle Scholar
  68. Swihart RK, Feng Z, Slade NA, Mason DM, Gehring TM (2001) Effects of habitat destruction and resource supplementation in a predator–prey metapopulation model. J Theor Biol 210:287–303.  https://doi.org/10.1006/jtbi.2001.2304 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Teckentrup L, Grimm V, Kramer-Schadt S, Jeltsch F (2018) Community consequences of foraging under fear. Ecol Modell 383:80–90CrossRefGoogle Scholar
  70. Thornton DH, Fletcher RJ (2014) Body size and spatial scales in avian response to landscapes: a meta-analysis. Ecography (Cop) 37:454–463Google Scholar
  71. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363CrossRefGoogle Scholar
  72. Tylianakis JM, Laliberté E, Nielsen A, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279CrossRefGoogle Scholar
  73. Urban MC (2007) Predator size and phenology shape prey survival in temporary ponds. Oecologia 154:571–580PubMedCrossRefPubMedCentralGoogle Scholar
  74. Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A, Galetti M, García MB, García D, Gómez JM, Jordano P, Medel R, Navarro L, Obeso JR, Oviedo R, Ramírez N, Rey PJ, Traveset A, Verdú M, Zamora R (2015) Beyond species loss: The extinction of ecological interactions in a changing world. Funct Ecol 29:299–307.  https://doi.org/10.1111/1365-2435.12356 CrossRefGoogle Scholar
  75. Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48CrossRefGoogle Scholar
  76. Wallgren M, Skarpe C (2009) Mammal community structure in relation to disturbance and resource gradients in southern Africa. Afr J Ecol 47:20–31CrossRefGoogle Scholar
  77. Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100CrossRefGoogle Scholar
  78. Whittaker RH (1975) Communities and ecosystems. Macmillan, New YorkGoogle Scholar
  79. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  80. Wilensky U (1999) NetLogo. http://ccl.northwestern.edu/netlogo/. Center for connected learning and computer-based modeling. Northwestern University, Evanston
  81. Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B Stat Methodol 73:3–36CrossRefGoogle Scholar
  82. Wood SN (2017) Generalized additive models: an introduction with R, 2nd edn. Chapman and Hall/CRC, LondonCrossRefGoogle Scholar
  83. Zanette LY, White AF, Allen MC, Clinchy M (2011) Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334:1398–1401PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Plant Ecology and Nature Conservation, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdam-GolmGermany
  2. 2.Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
  3. 3.Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
  4. 4.Department of EcologyTechnische Universität BerlinBerlinGermany

Personalised recommendations