Multi-scale niche modeling of three sympatric felids of conservation importance in central Iran

  • Rasoul Khosravi
  • Mahmoud-Reza HemamiEmail author
  • Samuel A. Cushman
Research Article



Carnivores in the central Iranian plateau have experienced considerable declines in their populations during the last century. Ecological niche models can inform conservation efforts aimed at increasing the suitability of carnivore habitat by providing valuable information on the scale-dependent relationships between species and their environment.


We used a multiscale modeling framework to predict habitat suitability and investigate the influence of spatial scale on species-environment relationships for three sympatric felids, chosen as surrogate species, including Asiatic cheetah (Acynonix jubatus), Persian leopard (Panthera pardus), and sand cat (Felis margarita) with the aim of informing conservation efforts for these species and other Iranian carnivores more widely.


We used opportunistically collected occurrence data and a presence-only, multiscale MaxEnt approach whilst exploring the impact of spatial filtering and data partitioning on model predictions and performance.


Scaling optimization showed that the performance of models was associated with variables at multiple spatial scales, with relationships tending to be strongest at the largest scales (4–8 km). Our findings showed that landscape composition generally have stronger influences on occurrence of the studied species than configuration. The comparison among models showed distinct patterns of habitat selection, implying niche partitioning between species.


Our knowledge of scale-dependent relationships between three sympatric felids and their spatial niches facilitates effective conservation of habitat connectivity for multiple carnivore species by prioritizing predicted key suitable patches inside and outside of protected areas which have significant contribution in maintaining landscape connectivity in Iran.


Carnivores Ecological niche models Multiscale species distribution models Spatial filtering Spatial scale 



We are grateful to Isfahan and Yazd provincial DOE for permission to enter to PAs. Also, we are extremely grateful for the support from the Isfahan University of Technology. This research was financially supported by a postdoctoral scholarship from the Iran's National Elites Foundation.

Supplementary material

10980_2019_900_MOESM1_ESM.docx (16.3 mb)
Supplementary material 1 (DOCX 16,700 kb)
10980_2019_900_MOESM2_ESM.xlsx (89 kb)
Supplementary material 2 (XLSX 88 kb)


  1. Ahmadi M, Nezami Balouchi B, Jowkar H, Hemami MR, Fadakar D, Malakouti-Khah S, Ostrowski S (2017) Combining landscape suitability and habitat connectivity to conserve the last surviving population of cheetah in Asia. Divers Distrib 23(6):592–603CrossRefGoogle Scholar
  2. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3(2):327–338CrossRefGoogle Scholar
  3. Bellamy C, Scott C, Altringham J (2013) Multiscale, presence-only habitat suitability models: fine-resolution maps for eight bat species. J Appl Ecol 50(4):892–901CrossRefGoogle Scholar
  4. Bellamy CC, van der Jagt AP, Barbour S, Smith M, Moseley D (2017) A spatial framework for targeting urban planning for pollinators and people with local stakeholders: a route to healthy, blossoming communities? Environ Res 158:255–268CrossRefGoogle Scholar
  5. Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77CrossRefGoogle Scholar
  6. Bowman A, Azzalini A (2015) package ‘sm’: nonparametric smoothing methods (version 2.2-5.4). 2014Google Scholar
  7. Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5(7):694–700CrossRefGoogle Scholar
  8. Caro T (2010) Conservation by proxy: indicator, umbrella, keystone, flagship, and other surrogate species. Island PressGoogle Scholar
  9. Coetzee BW (2017) Evaluating the ecological performance of protected areas. Biodivers Conserv 26(1):231–236CrossRefGoogle Scholar
  10. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20(1):37–46CrossRefGoogle Scholar
  11. Cohen J (1968) Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol Bull 70(4):213CrossRefGoogle Scholar
  12. Cushman SA, Elliot NB, Bauer D, Kesch K, Bothwell H, Flyman M, Mtare G, Macdonald DW, Loveridge AJ (2018) Prioritizing core areas, corridors and conflict hotspots for lion conservation in southern Africa. PloS one 13(7):e0196213CrossRefGoogle Scholar
  13. Di Minin E, Hunter LT, Balme GA, Smith RJ, Goodman PS, Slotow R (2013) Creating larger and better connected protected areas enhances the persistence of big game species in the Maputaland-Pondoland-Albany biodiversity hotspot. PLoS ONE 8(8):e71788CrossRefGoogle Scholar
  14. Dröge E, Creel S, Becker MS, M’soka J (2017) Spatial and temporal avoidance of risk within a large carnivore guild. Ecol Evol 7(1):189–199CrossRefGoogle Scholar
  15. Durant SM, Craft ME, Foley C, Hampson K, Lobora AL, Msuha M, Eblate E, Bukombe J, Mchetto J, Pettorelli N (2010) Does size matter? An investigation of habitat use across a carnivore assemblage in the Serengeti, Tanzania. J Anim Ecol 79(5):1012–1022CrossRefGoogle Scholar
  16. Evans J, Oakleaf J, Cushman S, Theobald D (2014) An ArcGIS toolbox for surface gradient and geomorphometric modeling, version 2.0-0. Laramie, WY.
  17. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34(1):487–515CrossRefGoogle Scholar
  18. Farhadinia MS, Ahmadi M, Sharbafi E, Khosravi S, Alinezhad H, Macdonald DW (2015) Leveraging trans-boundary conservation partnerships: persistence of Persian leopard (Panthera pardus saxicolor) in the Iranian Caucasus. Biol Conserv 191:770–778CrossRefGoogle Scholar
  19. Farhadinia M, Hemami M-R (2010) Prey selection by the critically endangered Asiatic cheetah in central Iran. J Nat Hist 44(19–20):1239–1249CrossRefGoogle Scholar
  20. Flather CH, Bevers M (2002) Patchy reaction-diffusion and population abundance: the relative importance of habitat amount and arrangement. Am Nat 159(1):40–56CrossRefGoogle Scholar
  21. Flint LE, Flint AL (2012) Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis. Ecol Process 1(1):2CrossRefGoogle Scholar
  22. Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9(5):e97122CrossRefGoogle Scholar
  23. Gábor L, Moudrý V, Barták V, Lecours V (2019) How do species and data characteristics affect species distribution models and when to use environmental filtering? Int J Geogr Inf Sci. Google Scholar
  24. Hayward M, Henschel P, O’brien J, Hofmeyr M, Balme G, Kerley G (2006) Prey preferences of the leopard (Panthera pardus). J Zool 270(2):298–313CrossRefGoogle Scholar
  25. Hearn AJ, Cushman SA, Ross J, Goossens B, Hunter LT, Macdonald DW (2018) Spatio-temporal ecology of sympatric felids on Borneo. Evidence for resource partitioning? PloS ONE 13(7):e0200828CrossRefGoogle Scholar
  26. Hemami M-R, Esmaeili S, Brito JC, Ahmadi M, Omidi M, Martínez-Freiría F (2018) Using ecological models to explore niche partitioning within a guild of desert felids. Hystrix Ital J Mammal 29(2):216–222Google Scholar
  27. Hemami M, Groves C (2001) Global antelope survey and regional action plans: Iran. In: Mallon D, Kingswood S (eds) Antelopes: Part 4 North Africa. The Middle East and Asia. Switzerland and Cambridge: IUCN, pp  114–118Google Scholar
  28. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978CrossRefGoogle Scholar
  29. Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MRJ (2016) Package ‘dismo’. Circles, 1Google Scholar
  30. Holland JD, Bert DG, Fahrig L (2004) Determining the spatial scale of species’ response to habitat. AIBS Bull 54(3):227–233Google Scholar
  31. Huang Q, Fleming CH, Robb B, Lothspeich A, Songer M (2018) How different are species distribution model predictions?—Application of a new measure of dissimilarity and level of significance to giant panda Ailuropoda melanoleuca. Ecol Inform 46:114–124CrossRefGoogle Scholar
  32. Jueterbock A (2015) ‘MaxentVariableSelection’vignetteGoogle Scholar
  33. Khalatbari L, Yusefi GH, Martínez-Freiría F, Jowkar H, Brito JC (2018) Availability of prey and natural habitats are related with temporal dynamics in range and habitat suitability for Asiatic Cheetah. Hystrix Ital J Mammal 29(1):145–151Google Scholar
  34. Khosravi R, Hemami M-R (2019) Identifying landscape species for ecological planning. Ecol Ind 99:140–148CrossRefGoogle Scholar
  35. Khosravi R, Hemami MR, Cushman SA (2018) Multispecies assessment of core areas and connectivity of desert carnivores in central Iran. Divers Distrib 24(2):193–207CrossRefGoogle Scholar
  36. Khosravi R, Hemami MR, Malekian M, Flint A, Flint L (2016) Maxent modeling for predicting potential distribution of goitered gazelle in central Iran: the effect of extent and grain size on performance of the model. Turk J Zool 40(4):574–585CrossRefGoogle Scholar
  37. Kittle AM, Watson AC, Cushman SA, Macdonald DW (2018) Forest cover and level of protection influence the island-wide distribution of an apex carnivore and umbrella species, the Sri Lankan leopard (Panthera pardus kotiya). Biodivers Conserv 27(1):235–263CrossRefGoogle Scholar
  38. Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19(11):1366–1379CrossRefGoogle Scholar
  39. Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40(4):778–789CrossRefGoogle Scholar
  40. Mateo Sanchez MC, Cushman SA, Saura S (2013) Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). Int J Geogr Inf Sci 28(8):1531–1546CrossRefGoogle Scholar
  41. McGarigal K, Cushman S, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. University of Massachusetts, Amherst, Massachusetts, USA.
  42. McGarigal K, Wan HY, Zeller KA, Timm BC, Cushman SA (2016a) Multi-scale habitat selection modeling: a review and outlook. Landscape Ecol 31(6):1161–1175CrossRefGoogle Scholar
  43. McGarigal K, Zeller KA, Cushman SA (2016b) Multi-scale habitat selection modeling: introduction to the special issue. Landscape Ecol 31(6):1157–1160CrossRefGoogle Scholar
  44. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259CrossRefGoogle Scholar
  45. Rabinowitz A, Zeller KA (2010) A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol Conserv 143(4):939–945CrossRefGoogle Scholar
  46. Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41(4):629–643CrossRefGoogle Scholar
  47. Redding DW, Lucas TC, Blackburn TM, Jones KE (2017) Evaluating Bayesian spatial methods for modelling species distributions with clumped and restricted occurrence data. PLoS ONE 12(11):e0187602CrossRefGoogle Scholar
  48. Reddy PA, Cushman SA, Srivastava A, Sarkar MS, Shivaji S (2017) Tiger abundance and gene flow in Central India are driven by disparate combinations of topography and land cover. Divers Distrib 23(8):863–874CrossRefGoogle Scholar
  49. Sauder JD, Rachlow JL (2014) Both forest composition and configuration influence landscape-scale habitat selection by fishers (Pekania pennanti) in mixed coniferous forests of the Northern Rocky Mountains. For Ecol Manage 314:75–84CrossRefGoogle Scholar
  50. Shahnaseri G, Hemami M-R, Khosravi R, Malakoutikhah S, Omidi M, Cushman SA (2019) Contrasting use of habitat, landscape elements, and corridors by grey wolf and golden jackal in central Iran. Landscape Ecol 34:1263–1277CrossRefGoogle Scholar
  51. Shirk AJ, Raphael MG, Cushman SA (2014) Spatiotemporal variation in resource selection: insights from the American marten (Martes americana). Ecol Appl 24(6):1434–1444CrossRefGoogle Scholar
  52. Shirk AJ, Wasserman TN, Cushman SA, Raphael MG (2012) Scale dependency of American marten (Martes americana) habitat relations [Chapter 12]. In: Aubry KB, Zielinski WJ, Raphael MG, Proulx G, Buskirk SW (eds) Biology and conservation of martens, sables, and fishers: a new synthesis. Cornell University Press, Ithaca, pp 269–283Google Scholar
  53. Syfert MM, Smith MJ, Coomes DA (2013) The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 8(2):e55158CrossRefGoogle Scholar
  54. Vergara M, Cushman SA, Urra F, Ruiz-González A (2016) Shaken but not stirred: multiscale habitat suitability modeling of sympatric marten species (Martes martes and Martes foina) in the northern Iberian Peninsula. Landscape Ecol 31(6):1241–1260CrossRefGoogle Scholar
  55. Villard MA, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51(2):309–318CrossRefGoogle Scholar
  56. Wan JZ, Wang CJ, Tan JF, Yu FH (2017) Climatic niche divergence and habitat suitability of eight alien invasive weeds in China under climate change. Ecol Evol 7(5):1541–1552CrossRefGoogle Scholar
  57. Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33(3):607–611Google Scholar
  58. Wasserman TN, Cushman SA, Wallin DO (2012) Multi scale habitat relationships of Martes americana in northern Idaho, USA. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, p 21CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Natural Resources and Environmental Engineering, School of AgricultureShiraz UniversityShirazIran
  2. 2.Department of Natural ResourcesIsfahan University of TechnologyIsfahanIran
  3. 3.Rocky Mountain Research Station, USDA Forest ServiceFlagstaffUSA

Personalised recommendations