Reducing light pollution improves connectivity for bats in urban landscapes

  • Alexis LaforgeEmail author
  • Julie Pauwels
  • Baptiste Faure
  • Yves Bas
  • Christian Kerbiriou
  • Jocelyn Fonderflick
  • Aurélien Besnard
Research Article



Light pollution can alter animal movements and landscape connectivity. This is particularly true in urban landscapes where a need to incorporate conservation issues in urban planning is urgent.


We investigated how potential light-reduction scenarios at conurbation scale change landscape connectivity for bats.


Through random stratified sampling and species distribution modelling, we assessed the relative importance of light pollution on bat presence probability and activity. We recorded bats during one entire night on each 305 sampling points in 2015. In 2016, we surveyed 94 supplementary points to evaluate models performance. We used our spatial predictions to characterize landscape resistance to bat movements. Then we applied a least-cost modelling approach to identify nocturnal corridors and estimated the impact of five light-reduction scenarios on landscape connectivity for two light non-tolerant bat species.


We found that light pollution detected from satellite images was a good predictor of bat presence and activity up to 700 m radius. Our results exhibited contrasting responses to average radiance: M. daubentonii responded negatively, P. nathusii had a positive response for low values then a negative response after a threshold radiance value of 20 W.m−−1 and E. serotinus responded positively. Five and four light-reduction scenarios significantly improved landscape connectivity for M. daubentonii and P. nathusii respectively.


Light-reduction measures should be included in urban planning to provide sustainable conditions for bats in cities. We advocate for the use of our methodological approach to further studies to find the best trade-off between conservation needs and social acceptability.


Artificial light at night (ALAN) Chiroptera Land-use planning Species distribution modelling (SDM) Least-cost path analysis 



We thank Yohan Tison from “La Ville de Lille”, Sophie Wrobel and Claire Poitout from “Espaces Naturels Lille Métropole”, Matthieu Lageard from « Biotope » , Jean-François Julien and Alexandre Haquart for their field assistance, equipment lending and with acoustic identification. The project “TRAME NOIRE” was funded by the “conseil regional Nord-Pas-de-Calais” and by “Fondation pour la recherche sur la biodiversité”.

Supplementary material

10980_2019_803_MOESM1_ESM.docx (687 kb)
Supplementary material 1 (DOCX 687 kb)


  1. Akaike H (1974) A new look at the statistical model identification. Autom Control IEEE Trans 19:716–723CrossRefGoogle Scholar
  2. Akasaka T, Nakano D, Nakamura F (2009) Influence of prey variables, food supply, and river restoration on the foraging activity of Daubenton’s bat (Myotis daubentonii) in the Shibetsu River, a large lowland river in Japan. Biol Conserv 142:1302–1310.CrossRefGoogle Scholar
  3. Arthur L, Lemaire M (2009) Les chauves-souris de France. Belgique, Luxemb SuisseGoogle Scholar
  4. Azam C, Kerbiriou C, Vernet A, Julien JF, Bas Y, Plichard L, Maratrat J, Le Viol I (2015) Is part-night lighting an effective measure to limit the impacts of artificial lighting on bats? Glob Chang Biol 21:4333–4341CrossRefGoogle Scholar
  5. Azam C, Le Viol I, Julien JF, Bas Y, Kerbiriou C (2016) Disentangling the relative effect of light pollution, impervious surfaces and intensive agriculture on bat activity with a national-scale monitoring program. Landscape Ecol 53:1694–1703Google Scholar
  6. Barataud M, Tupinier Y, Limpens H, Cockle-Betian A (2015) Acoustic ecology of European bats: species identification, study of their habitats and foraging behaviour. 352Google Scholar
  7. Bas Y, Escallon A, Ferre M, Haquart A, Rufray V, Disca T, Julien JF (2013) Automatic echolocation call identification in Europe vs. the Neotropics: more species does not mean more difficult. XVI Int Bat Res Conf San Jose, Costa RicaGoogle Scholar
  8. Baugh K, Hsu FC, Elvidge C, Zhizhin M (2013) Nighttime lights compositing using the VIIRS day-night band: preliminary results. Proc Asia-Pacific Adv Netw 35:70–86CrossRefGoogle Scholar
  9. Beier P, Majka DR, Spencer WD (2008) Forks in the road: choices in procedures for designing wildland linkages. Conserv Biol 22:836–851.CrossRefGoogle Scholar
  10. Boughey KL, Lake IR, Haysom KA, Dolman PM (2011) Improving the biodiversity benefits of hedgerows: how physical characteristics and the proximity of foraging habitat affect the use of linear features by bats. Biol Conserv 144:1790–1798.CrossRefGoogle Scholar
  11. Brad H. McRae and D. M. Kavanagh. (2011) Linkage Mapper Connectivity Analysis Software. 1–22.
  12. Burt J (2006) Syrinx, Version 2.6h. University of Washington, Seattle, USAGoogle Scholar
  13. Coleman JL, Barclay RMR (2012) Urbanization and the abundance and diversity of Prairie bats. Urban Ecosyst 15:87–102.CrossRefGoogle Scholar
  14. Connell JH (2013) Diversity in Tropical Rain Forests and Coral Reefs. Science 199:1302–1310CrossRefGoogle Scholar
  15. Dietz M, Encarnação JA, Kalko EKV (2006) Small scale distribution patterns of female and male Daubenton’ s bats (Myotis daubentonii) Small scale distribution patterns of female and male Daubenton’ s bats (Myotis daubentonii). Acta Chiropterologica 8:403–415.CrossRefGoogle Scholar
  16. Dietz C, von Helversen O, Nill D (2009) L’encyclopédie des chauves-souris d’Europe et d’Afrique du Nord: biologie, caractéristiques, protection. Delachaux et NiestléGoogle Scholar
  17. Dutilleul S (2009) Plan Régional de Restauration des Chiroptères du Nord-Pas-de-Calais: Période 2009-2013. Coord Mammal du Nord la Fr 95Google Scholar
  18. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Townsend AP, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Sobero´n J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop) 29:129–151CrossRefGoogle Scholar
  19. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697.CrossRefGoogle Scholar
  20. Erickson JL, West SD (2002) The influence of regional climate and nightly weather conditions on activity patterns of insectivorous bats. Acta Chiropterologica 4:17–24.CrossRefGoogle Scholar
  21. Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280.CrossRefGoogle Scholar
  22. FitzGibbon S, Putland D, Goldizen A (2007) The importance of functional connectivity in the conservation of a ground-dwelling mammal in an urban Australian landscape. Landscape Ecol 22:1513–1525.CrossRefGoogle Scholar
  23. Fonderflick J, Azam C, Brochier C, Cosson E, Quékenborn D (2015) Testing the relevance of using spatial modeling to predict foraging habitat suitability around bat maternity: a case study in Mediterranean landscape. Biol Conserv 192:120–129CrossRefGoogle Scholar
  24. Frey-Ehrenbold A, Bontadina F, Arlettaz R, Obrist MK (2013) Landscape connectivity, habitat structure and activity of bat guilds in farmland-dominated matrices. J Appl Ecol 50:252–261.CrossRefGoogle Scholar
  25. Gaisler J, Zukal J, Rehak Z, Homolka M (1998) Habitat preference and fight activity of bats in a city. J Zool 244:439–445CrossRefGoogle Scholar
  26. Gaston KJ, Duffy, JP, Gaston S, Bennie J, Davies TW (2014) Human alteration of natural light cycles: causes and ecological consequences. Oecologia 176:917–931CrossRefGoogle Scholar
  27. Gaston KJ, Visser ME, Hölker F (2015) The biological impacts of artificial light at night: the research challenge. Philos Trans R Soc Lond B 370:20140133.CrossRefGoogle Scholar
  28. Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DPC (2008) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6:264–272CrossRefGoogle Scholar
  29. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009.CrossRefGoogle Scholar
  30. Hale JD, Fairbrass AJ, Matthews TJ, Sadler JP (2012) Habitat composition and connectivity predicts bat presence and activity at foraging sites in a large uk conurbation. PLoS ONE 7:e33300.CrossRefGoogle Scholar
  31. Hale JD, Fairbrass AJ, Matthews TJ, Davies G, Sadler JP (2015) The ecological impact of city lighting scenarios: exploring gap crossing thresholds for urban bats. Glob Chang Biol 21:2467–2478CrossRefGoogle Scholar
  32. Haquart A (2013) Référentiel d’activité des chiroptères—Eléments pour l’interprétation des dénombrements de chiroptères avec les méthodes acoustiques en zone méditerranéenne française. Biotope, Ec Prat des Hautes Etudes, p 99Google Scholar
  33. Hastie TJ, Tibshirani RJ (1990) Generalized additive models, volume 43 of Monographs on Statistics and Applied Probability. CRC Press, Boca RatonGoogle Scholar
  34. Hölker F, Wolter C, Perkin EK, Tockner K (2010) Light pollution as a biodiversity threat. Trends Ecol Evol 25:681–682.CrossRefGoogle Scholar
  35. Ives AR, Klopper ED (1997) Spatial variation in abundance created by stochastic temporal variation. Ecology 78:1907–1913.CrossRefGoogle Scholar
  36. Jackson ND, Fahrig L (2014) Landscape context affects genetic diversity at a much larger spatial extent than population abundance. Ecology 95:871–881.CrossRefGoogle Scholar
  37. Krüger F, Clare EL, Symondson WO, Keišs O, Pētersons G (2014) Diet of the insectivorous bat Pipistrellus nathusii during autumn migration and summer residence. Mol Ecol 23:3672–3683CrossRefGoogle Scholar
  38. Kuijper DP, Schut J, van Dullemen D, Toorman H, Goossens N, Ouwehand J, Limpens HJGA (2008) Experimental evidence of light disturbance along the commuting routes of pond bats (Myotis dasycneme). Lutra 51:37–49Google Scholar
  39. Kyba CCM, Kuester T, Sánchez de Miguel A, Baugh K, Jechow A, Hölker F, Bennie J, Elvidge CD, Gaston KJ, Guanter L (2017) Artificially lit surface of Earth at night increasing in radiance and extent. Sci Adv 3:e1701528CrossRefGoogle Scholar
  40. Lacoeuilhe A, Machon N, Le Bocq A, Kerbiriou C (2014) The influence of low intensities of light pollution on bat communities in a semi-natural context. Plos ONE 9:103042.CrossRefGoogle Scholar
  41. LaPoint S, Balkenhol N, Hale J, Sadler J, Ree R (2015) Ecological connectivity research in urban areas. Funct Ecol 29:868–878CrossRefGoogle Scholar
  42. LaRue MA, Nielsen CK (2008) Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods. Ecol Modell 212:372–381.CrossRefGoogle Scholar
  43. Luck GW, Smallbone L, Threlfall C, Law B (2013) Patterns in bat functional guilds across multiple urban centres in south-eastern Australia. Landscape Ecol 28:455–469.CrossRefGoogle Scholar
  44. Mathews F, Roche N, Aughney T, Jones N, Day J, Baker J, Langton S (2015) Barriers and benefits: implications of artificial night-lighting for the distribution of common bats in Britain and Ireland. Philos Trans R Soc B 370:20140124–20140124CrossRefGoogle Scholar
  45. McDonnell MJ, Hahs AK (2008) The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landscape Ecol 23:1143–1155.CrossRefGoogle Scholar
  46. Mickleburgh SP, Hutson AM, Racey PA (2002) A review of the global conservation status of bats Major threats. Oryx 36:18–34.CrossRefGoogle Scholar
  47. Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2016) What determines the spatial extent of landscape effects on species? Landscape Ecol 31:1177–1194CrossRefGoogle Scholar
  48. Miller BW (2001) A method for determining relative activity of free flying bats using a new activity index for acoustic monitoring. Acta Chiropterol 3:93–105Google Scholar
  49. Roever CL, Van Aarde RJ, Leggett K (2012) Functional responses in the habitat selection of a generalist mega-herbivore, the African savannah elephant. Ecography (Cop) 35:972–982CrossRefGoogle Scholar
  50. Russo D, Ancillotto L (2015) Sensitivity of bats to urbanization: a review. Mamm Biol 80:205–212.CrossRefGoogle Scholar
  51. Rydell J (1991) Seasonal use of illuminated areas by foraging northern bats Eptesicus nilssoni. Holarct Ecol 14:203–207Google Scholar
  52. Stevenson-Holt CD, Watts K, Bellamy CC, Nevin OT, Ramsey AD (2014) Defining landscape resistance values in least-cost connectivity models for the invasive grey squirrel: A comparison of approaches using expert-opinion and habitat suitability modelling. PLoS ONE 9:e112119CrossRefGoogle Scholar
  53. Stone EL, Harris S, Jones G (2015) Impacts of artificial lighting on bats: a review of challenges and solutions. Mamm Biol 80:213–219.CrossRefGoogle Scholar
  54. Stone EL, Jones G, Harris S (2009) Street lighting disturbs commuting bats. Curr Biol 19:1123–1127.CrossRefGoogle Scholar
  55. Stone EL, Jones G, Harris S (2012) Conserving energy at a cost to biodiversity? Impacts of LED lighting on bats. Glob Chang Biol 18:2458–2465.CrossRefGoogle Scholar
  56. Straka TM, Lentini PE, Lumsden LF, Wintle BA, van der Ree R (2016) Urban bat communities are affected by wetland size, quality, and pollution levels. Ecol Evol 6:4761–4774CrossRefGoogle Scholar
  57. Taylor PD, Fahrig L, With KA (2006) Landscape connectivity: a return to the basics. Conserv Biol Ser 14:29Google Scholar
  58. Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19.CrossRefGoogle Scholar
  59. Tsao JY, Saunders HD, Creighton JR, Coltrin ME, Simmons JA (2010) Solid-state lighting: an energy-economics perspective. J Phys D Appl Phys 43:354001CrossRefGoogle Scholar
  60. Urban D, Keitt T (2010) Landscape connectivity: a Graph-theoretic perspective. Ecology 82:1205–1218CrossRefGoogle Scholar
  61. Watts K, Eycott AE, Handley P, Ray D, Humphrey JW, Quine CP (2010) Targeting and evaluating biodiversity conservation action within fragmented landscapes: an approach based on generic focal species and least-cost networks. Landscape Ecol 25:1305–1318CrossRefGoogle Scholar
  62. Weller TJ, Castle KT, Liechti F, Hein CD, Schirmacher MR, Cryan PM (2016) First direct evidence of long-distance seasonal movements and hibernation in a migratory bat. Sci Rep 6:34585CrossRefGoogle Scholar
  63. Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27:777–797.CrossRefGoogle Scholar
  64. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) In Gail M, Krickeberg K, Samet JM, Tsiatis A, Wong W (eds) Mixed effects models and extensions in ecology with R. Springer, New YorkGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CNRS, PSL Research University, EPHE, UM, SupAgro, IRD, INRA, UMR 5175 CEFEMontpellierFrance
  2. 2.Conservatoire d’Espaces Naturels Midi-PyrénéesToulouseFrance
  3. 3.INRA, UMR Dynafor, 1201 - Université de Toulouse - INPT - ENSAT, INPT - EI PURPAN, INRA, 24 Chemin de Borde Rouge- AuzevilleCastanet TolosanFrance
  4. 4.Museum National d’Histoire Naturelle, Centre d’Ecologie et des Sciences de la Conservation, UMR 7204 MNHN-CNRS-UPMCParisFrance
  5. 5.Biotope, Agence Nord-Littoral ZA de la MaieRinxentFrance
  6. 6.Museum National d’Histoire Naturelle Ringgold standard institution, Station de Biologie Marine de ConcarneauConcarneauFrance

Personalised recommendations