Advertisement

Landscape Ecology

, Volume 34, Issue 3, pp 487–501 | Cite as

Small forest patches as pollinator habitat: oases in an agricultural desert?

  • Willem ProesmansEmail author
  • Dries Bonte
  • Guy Smagghe
  • Ivan Meeus
  • Guillaume Decocq
  • Fabien Spicher
  • Annette Kolb
  • Isgard Lemke
  • Martin Diekmann
  • Hans Henrik Bruun
  • Monika Wulf
  • Sanne Van Den Berge
  • Kris Verheyen
Research Article

Abstract

Context

Small forest fragments are often the most abundant type of semi-natural habitat in intensive agricultural landscapes. Wild pollinators can use these forest patches as nesting or foraging habitat. However, the importance of small forest fragments as pollinator habitat has been neglected so far.

Objectives

We evaluated the role of these forest patches as pollinator habitat, focusing on the effect of nesting and foraging resources, both at a local and at a landscape scale.

Methods

Pollinators were sampled with pan traps in 78 forest patches, spread over five study regions in Northwestern Europe. We evaluated effect of forest and landscape characteristics on bee and hoverfly species richness, diversity and activity-abundance.

Results

We showed that the bee community is influenced by both microsite conditions and landscape characteristics. Species richness and activity-abundance were higher when suitable nesting resources, such as sloped terrain and bare soil were available. This suggests that forest edges are important in providing nesting sites, but that most species forage in different habitats. Hoverfly species richness was higher in old forest fragments. This relation was mainly caused by the presence of forest specialist hoverflies in old forest fragments.

Conclusions

Small forest fragments in agricultural landscapes can harbour a diverse pollinator community. Increasing the amount of nesting habitat, such as bare soil and sloped terrains is expected to have beneficial effects on the bee community, whereas older forest fragments should be conserved to sustain a rich hoverfly community.

Keywords

Pollinators Bees Hoverflies Agro-ecology Forest patches Forest fragments 

Notes

Acknowledgements

We are grateful to the landowners for giving permission to carry out this research on their properties. Jörg Brunet provided important information about the Sebbarp landcape, while Cecilia Dupré, Jana Michaelis, Andreas Suchopar, Merle Büsing, Jennifer Schröder and Rebecca Siemering assisted in the fieldwork in the Zevener Geest and Helena Theuwissen in Glabbeek. The first author was supported by a grant by FWO-Vlaanderen (FWO14/ASP/195).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10980_2019_782_MOESM1_ESM.docx (44 kb)
Supplementary material 1 (DOCX 43 kb)

References

  1. Alberdi I, Condés S, Martínez-Millán J (2010) Review of monitoring and assessing ground vegetation biodiversity in national forest inventories. Environ Monit Assess 164:649–676CrossRefGoogle Scholar
  2. Bailey S, Requier F, Nusillard B, Roberts SPM, Potts SG, Bouget C (2014) Distance from forest edge affects bee pollinators in oilseed rape fields. Ecol Evol 4:370–380CrossRefGoogle Scholar
  3. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinator and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354CrossRefGoogle Scholar
  4. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Brunet J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J-F, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vie J-C, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168CrossRefGoogle Scholar
  5. Campbell JW, Hanula JL (2007) Efficiency of Malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. J Insect Conserv 11:399–408CrossRefGoogle Scholar
  6. Cowgill SE, Wratten SD, Sotherton NW (1993) The selective use of floral resources by the hoverfly Episyrphus balteatus (Diptera: Syrphidae) on farmland. Ann Appl Biol 122:223–231CrossRefGoogle Scholar
  7. Cranmer L, McCollin D, Ollerton J (2012) Landscape structure influences pollinator movements and directly affects plant reproductive success. Oikos 121:562–568CrossRefGoogle Scholar
  8. Droege S, Tepedino VJ, Lebuhn G, Link W, Minckley RL, Chen Q, Conrad C (2010) Spatial patterns of bee captures in North American bowl trapping surveys. Insect Conserv Divers 3:15–23CrossRefGoogle Scholar
  9. Farwig N, Bailey D, Bochud E, Herrmann JD, Kindler E, Reusser N, Schüepp C, Schmidt-Entling MH (2009) Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland. Landscape Ecol 24:919–927CrossRefGoogle Scholar
  10. Fontaine C, Dajoz I, Meriguet J, Loreau M (2006) Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4:e1CrossRefGoogle Scholar
  11. Garratt MPD, Breeze TD, Jenner N, Polce C, Biesmeijer JC, Potts SG (2014) Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agric Ecosyst Environ 184:34–40CrossRefGoogle Scholar
  12. Gotelli NJ, Colwell RK (2001) Quantifyinf biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  13. Grundel R, Jean RP, Frohnapple KJ, Glowacki GA, Scott PE, Pavlovic NB (2010) Floral and nesting resources, habitat structure and fire influence bee distribution across an open-forest gradient. Ecol Appl 20:1678–1692CrossRefGoogle Scholar
  14. Heneberg P, Bogusch P, Řehounek J (2013) Sandpits provide critical refuge for bees and wasps (Hymenoptera: Apocrita). J Insect Conserv 17:473–490CrossRefGoogle Scholar
  15. Holland JD, Bert DG, Fahrig L, Holland JD, Bert DG, Fahrig L (2004) Determining the spatial scale of species’ response to habitat. Bioscience 54:227–233CrossRefGoogle Scholar
  16. Holzschuh A, Steffan-dewenter I, Tscharntke T (2009) Grass strip corridors in agricultural landscapes enhance nest-site colonization by solitary wasps. Ecol Appl 19:123–132CrossRefGoogle Scholar
  17. Jauker F, Bondarenko B, Becker HC, Steffan-Dewenter I (2012) Pollination efficiency of wild bees and hoverflies provided to oilseed rape. Agric For Entomol 14:81–87CrossRefGoogle Scholar
  18. Jauker F, Diekötter T, Schwarzbach F, Wolters V (2009) Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landscape Ecol 24:547–555CrossRefGoogle Scholar
  19. Jauker F, Wolters V (2008) Hover flies are efficient pollinators of oilseed rape. Oecologia 156:819–823CrossRefGoogle Scholar
  20. Joshi NK, Otieno M, Rajotte EG, Fleischer SJ, Biddinger DJ (2016) Proximity to woodland and landscape structure drives pollinator visitation in apple orchard ecosystem. Front Ecol Evol 4:1–9CrossRefGoogle Scholar
  21. Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Biol Sci 274:303–313CrossRefGoogle Scholar
  22. Kosior A, Celary W, Olejniczak P, Fijal J, Król W, Solarz W, Plonka P (2007) The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of Western and Central Europe. Oryx 41:79–88CrossRefGoogle Scholar
  23. Larson BMH, Kevan PG, Inouye DW (2001) Flies and flowers: taxonomic diversity of anthophiles and pollinators. Can Entomol 133:439–465CrossRefGoogle Scholar
  24. McCollin D, Jackson JI, Bunce RGH, Barr CJ, Stuart R (2000) Hedgerows as habitat for woodland plants. J Environ Manag 60:77–90CrossRefGoogle Scholar
  25. Murray TE, Kuhlmann M, Potts SG (2009) Conservation ecology of bees: populations, species and communities. Apidologie 40:211–236CrossRefGoogle Scholar
  26. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326CrossRefGoogle Scholar
  27. Ouin A, Sarthou J, Bouyjou B, Deconchat M, Lacombe J, Monteil C (2006) The species-area relationship in the hoverfly (Diptera, Syrphidae) communities of forest fragments in southern France. Ecography (Cop.) 29:183–190CrossRefGoogle Scholar
  28. Potts SG, Vulliamy B, Dafni A, Ne’eman G, Willmer PG (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84:2628–2642CrossRefGoogle Scholar
  29. Potts SG, Vulliamy B, Roberts S, O’Toole C, Dafni A, Ne’eman G, Willmer PG (2004) Nectar resource diversity organises flower-visitor community structure. Entomol Exp Appl 113:103–107CrossRefGoogle Scholar
  30. Potts SG, Vulliamy B, Roberts SPM, O’Toole C, Dafni A, Ne’eman G, Willmer PG (2005) Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol Entomol 30:78–85CrossRefGoogle Scholar
  31. QGIS Development Team (2015) QGIS 2.16 Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org
  32. Reemer M, Renema W, Van Steenis W, Zeegers T, Barendregt A, Smit JT, Van Veen MP, Van Steenis J, Van der Leij LJJM (2009) De Nederlandse zweefvliegen (Diptera, Syrphidae). Nederlandse Fauna 8. Nationaal Natuurhistorisch Museum Naturalis, KNNV Uitgeverij, European Invertebrate Survey Nederland, LeidenGoogle Scholar
  33. Roulston TH, Goodell K (2011) The role of resources and risks in regulating wild bee populations. Annu Rev Entomol 56:293–312CrossRefGoogle Scholar
  34. Schaffers AP, Raemakers IP, Sykora KV, ter Braak CJF (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794CrossRefGoogle Scholar
  35. Scheper J, Reemer M, van Kats R, Ozinga WA, van der Linden GTJ, Schaminée JHJ, Siepel H, Kleijn D (2014) Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. Proc Natl Acad Sci USA 111(49):17552–17557CrossRefGoogle Scholar
  36. Schüepp C, Herrmann JD, Herzog F, Schmidt-Entling MH (2011) Differential effects of habitat isolation and landscape composition on wasps, bees, and their enemies. Oecologia 165:713–721CrossRefGoogle Scholar
  37. Sheffield CS, Pindar A, Packer L, Kevan PG (2013) The potential of cleptoparasitic bees as indicator taxa for assessing bee communities. Apidologie 44:501–510CrossRefGoogle Scholar
  38. Shuler RE, Roulston TH, Farris GE (2005) Farming practices influence wild pollinator populations on squash and pumpkin. J Econ Entomol 98:790–795CrossRefGoogle Scholar
  39. Sobek S, Tscharntke T, Scherber C, Schiele S, Steffan-Dewenter I (2009) Canopy vs. understory: does tree diversity affect bee and wasp communities and their natural enemies across forest strata? For Ecol Manag 258:609–615CrossRefGoogle Scholar
  40. Speight MCD, Castella E, Sarthou J (2016) StN 2016. Syrph the Net. The database of European SyrphidaeGoogle Scholar
  41. Stoate C, Báldi A, Beja P, Boatman ND, Herzon I, van Doorn A, de Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe: a review. J Environ Manag 91:22–46CrossRefGoogle Scholar
  42. Taki H, Kevan PG, Ascher JS (2007) Landscape effects of forest loss in a pollination system. Landscape Ecol 22:1575–1587CrossRefGoogle Scholar
  43. Torné-Noguera A, Rodrigo A, Arnan X, Osorio S, Barril-Graells H, Correia da Rocha-Filho L, Bosch J (2014) Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size. PLoS ONE 9:e97255CrossRefGoogle Scholar
  44. Ulyshen MD, Soon V, Hanula JL (2010) On the vertical distribution of bees in a temperate deciduous forest. Insect Conserv Divers 3:222–228CrossRefGoogle Scholar
  45. Vandekerkhove K, de Keersmaeker L, Walleyn R, Köhler F, Crevecoeur L, Govaere L, Thomaes A, Verheyen K (2011) Reappearance of old-growth elements in lowland woodlands in northern Belgium: do the associated species follow? Silva Fenn. 45:909–935CrossRefGoogle Scholar
  46. Verboven HAF, Uyttenbroeck R, Brys R, Hermy M (2014) Different responses of bees and hoverflies to land use in an urban–rural gradient show the importance of the nature of the rural land use. Landsc Urban Plan 126:31–41CrossRefGoogle Scholar
  47. Watson JC, Wolf AT, Ascher JS (2011) Forested landscapes promote richness and abundance of native bees (Hymenoptera: Apoidea: Anthophila) in Wisconsin apple orchards. Environ Entomol 40:621–632CrossRefGoogle Scholar
  48. Westrich P (1996) Habitat requirements of central European bees and the problems of partial habitats. In: Matheson A, Buchmann SL, O’Toole C, Westrich P, Williams IH (eds) The conservation of bees. The Linnean society of london, London, pp 1–16Google Scholar
  49. Winfree R, Griswold TL, Kremen C (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conserv Biol 21:213–223CrossRefGoogle Scholar
  50. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Willem Proesmans
    • 1
    • 2
    • 3
    Email author
  • Dries Bonte
    • 2
  • Guy Smagghe
    • 3
  • Ivan Meeus
    • 3
  • Guillaume Decocq
    • 4
  • Fabien Spicher
    • 4
  • Annette Kolb
    • 5
  • Isgard Lemke
    • 5
  • Martin Diekmann
    • 5
  • Hans Henrik Bruun
    • 6
  • Monika Wulf
    • 7
  • Sanne Van Den Berge
    • 1
  • Kris Verheyen
    • 1
  1. 1.Forest & Nature Lab, Department of Forest and Water ManagementGhent UniversityMelle-GontrodeBelgium
  2. 2.Terrestrial Ecology Unit, Biology DepartmentGhent UniversityGhentBelgium
  3. 3.Department of Crop Protection, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  4. 4.UR “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, FRE 3498 CNRS-UPJV), Université de Picardie Jules VerneAmiensFrance
  5. 5.Vegetation Ecology and Conservation Biology, Department of Ecology and Evolutionary BiologyUniversity of BremenBremenGermany
  6. 6.Department of BiologyUniversity of CopenhagenCopenhagenDenmark
  7. 7.Department for Land Use Systems and Landscape EcologyLeibniz-Centre for Agricultural Landscape ResearchMünchebergGermany

Personalised recommendations