Application of a dynamic model using agronomic and economic data to evaluate the sustainability of the olive grove landscape of Estepa (Andalusia, Spain)

  • A. A. Rodríguez SousaEmail author
  • J. M. Barandica
  • J. Sanz-Cañada
  • A. J. Rescia
Research Article



In the Andalusia region (Spain), olive grove agro-systems cover a wide area, forming social-ecological landscapes. Recent socioeconomic changes have increased the vulnerability of these landscapes, resulting in the abandonment and intensification of farms. The provision of the main ecosystem services of these landscapes have thus been degraded.


To analyse the sustainability of an olive grove social-ecological landscape in Andalusia. Specifically, to develop a quantitative model proposing land planning and management scenarios, considering abandonment, production and economic benefits of olive crops in different conditions of erosion and management.


We applied a dynamic model using agronomic and economic data, to evaluate different types of olive management. We considered different levels of erosion, the loss of production related to this erosion, and useful life spans for each type of management. We simulated scenarios for the long-term assessment of dynamics of crops, abandonment rate, production and benefits.


(a) There was a loss of productive lands and benefits in the medium term in the more intensive crops. (b) Scenarios that partially incorporated ecological management proved to be more sustainable without economic subsidies. (c) The spatial combination of integrated, intensive and ecological plots was sustainable, and was well balanced from an economic, productive and ecological point of view.


Scenarios that partially incorporate ecological management allowed the best economic and environmental balance. However, to ensure the sustainability of olive landscapes, farmers should be financially rewarded for their role in the conservation of ecosystem services through landscape stewardship and direct environmental payments.


Common Agricultural Policy Landscape services Management scenarios Soil erosion Sustainable olive grove management 



Authors thank to Dr. Moisés Caballero, Secretary of the Estepa Denomination of Origin, for his advice and for facilitating the preparation of this investigation and to M. A. Rodríguez Sousa for her comments and suggestions on the first drafts of the manuscript. We also thank to a native English speaking for correcting the grammar, punctuation, spelling, and overall style of the English. Antonio Rodríguez-Sousa is a PhD student supported through a scholarship from the University Complutense of Madrid. Support for this study was provided by the research project of the National Plan of the Government of Spain (AGL2012-36537-EXTERSIAL II-PI: Sanz-Cañada).

Supplementary material

10980_2019_773_MOESM1_ESM.doc (548 kb)
Supplementary material 1 (DOC 547 kb)


  1. AEMO (Asociación Española de Municipios del Olivo/Spanish Association of Municipalities of Olive groves) (2012) Aproximación a los costes del cultivo del olivo. Cuaderno de conclusiones del seminario AEMO. Córdoba, Spain. Accessed 12 Nov 2017
  2. Aguilera F, Valenzuela LR (2012) Microclimatic-induced fluctuations in the flower and pollen production rate of olive trees (Olea europaea L.). Grana 51(3):228–239CrossRefGoogle Scholar
  3. Beaufoy G (2001) EU Policies for Olive Farming: Unsustainable on All Counts. WWF. BirdLife International. Brussels, Belgium. Accessed 28 Nov 2017
  4. BOJA (Boletín Oficial de la Junta de Andalucía/Official Regional Government of Andalusia Bulletin) (2011) Ley 5/2011, de 6 de octubre, del olivar de Andalucía. Accessed 05 Nov 2018
  5. BOJA (Boletín Oficial de la Junta de Andalucía/Official Regional Government of Andalusia Bulletin) (2015) Plan Director del Olivar Andaluz Decreto 103/2015. Accessed 31 Dec 2017
  6. Colacicco D, Osborn T, Alt K (1989) Economic damage from soil erosion. J Soil Water Conserv 44(1):35–39Google Scholar
  7. Connor DJ, Gómez-del-Campo M, Rousseaux MC, Searles PS (2014) Structure, management and productivity of hedgerow olive orchards: a review. Sci Hortic-Amsterdam 169:71–93CrossRefGoogle Scholar
  8. Cumming GS, Olsson P, Chapin FS, Holling CS (2013) Resilience, experimentation, and scale mismatches in social-ecological landscapes. Landscape Ecol 28:1139–1150CrossRefGoogle Scholar
  9. D’Imperio M, Mannina L, Capitani D, Bidet O, Rossi E, Bucarelli FM, Quaglia GB, Segre A (2007) NMR and statistical study of olive oils from Lazio: a geographical, ecological and agronomic characterization. Food Chem 105(3):1256–1267CrossRefGoogle Scholar
  10. Diodato N (2006) Predicting RUSLE (Revised Universal Soil Loss Equation) monthly erosivity index from readily available rainfall data in Mediterranean area. Environmentalist 26(1):63–70CrossRefGoogle Scholar
  11. Duarte F, Jones N, Fleskens L (2008) Traditional olive orchards on sloping land: sustainability or abandonment? J Environ Manage 89(2):86–98CrossRefGoogle Scholar
  12. Egea P, Pérez LP (2016) Sustainability and multifunctionality of protected designations of origin of olive oil in Spain. Land Use Policy 58:264–275CrossRefGoogle Scholar
  13. EUROSTAT (European Statistics) (2017) Accessed 12 Jan 2017
  14. FAO (Food and Agriculture Organization) (1995) Yearbook of production. FAO. Rome. Accessed 14 Dec 2017
  15. Farina A (2000) The cultural landscape as a model for the integration of ecology and economics. Bioscience 50(4):313–320CrossRefGoogle Scholar
  16. Ferguson L (2006) Trends in olive fruit handling previous to its industrial transformation. Grasas Aceites 57(1):9–15CrossRefGoogle Scholar
  17. Ferrise R, Moriondo M, Trombi G, Miglietta F, Bindi M (2013) Climate change impacts on typical Mediterranean crops and evaluation of adaptation strategies to cope with. In: Navarra A, Tubiana L (eds) Regional assessment of climate change in the Mediterranean. Springer, Dordrecht, pp 49–70CrossRefGoogle Scholar
  18. Fleskens L, Duarte F, Eicher I (2009) A conceptual framework for the assessment of multiple functions of agro-ecosystems: a case study of Trás-os-Montes olive groves. J Rural Stud 25:141–155CrossRefGoogle Scholar
  19. Fleskens L, Stroosnijder L (2007) Is soil erosion in olive groves as bad as often claimed? Geoderma 141(3):260–271CrossRefGoogle Scholar
  20. Flohre A, Fischer C, Aavik T, Bengtsson J, Berendse F, Bommarco R, Ceryngier P, Clement LW, Dennis C, Eggers S, Emmerson M, Geiger F, Guerrero I, Hawro V, Inchausti P, Liira J, Morales MB, Oñate JJ, Pärt T, Weisser WW, Winqvist C, Thies C, Tscharntke T (2011) Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol Appl 21(5):1772–1781CrossRefGoogle Scholar
  21. Francia Martínez JR, Durán Zuazo VH, Martínez Raya A (2006) Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Sci Total Environ 358:46–60CrossRefGoogle Scholar
  22. Galán C, García-Mozo H, Vázquez L, Ruiz L, De La Guardia CD, Trigo MM (2005) Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol 49(3):184–188CrossRefGoogle Scholar
  23. García-Ruiz JM, Lana-Renault N (2011) Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region–A review. Agr Ecosyst Environ 140(3–4):317–338CrossRefGoogle Scholar
  24. Gisbert Blanquer JM, Ibañez Asensio S, Moreno Ramón H (2012) El factor K de la ecuación universal de pérdidas de suelo (USLE). Universitat Politècnica de València, España. Accessed 7 Nov 2018
  25. Gómez JA, Battany M, Renschler CS, Fereres E (2003) Evaluating the impact of soil management on soil loss in olive orchards. Soil Use Manage 19(2):127–134CrossRefGoogle Scholar
  26. Gómez JA, Giráldez JV (2010) In: Gómez Calero, J. A. (Ed.), Sostenibilidad de la producción de olivar en Andalucía. Consejería de Agricultura y Pesca, Junta de Andalucía. Sevilla, España. Accessed 01 July 2018Google Scholar
  27. Gómez JA, Infante-Amate J, De Molina MG, Vanwalleghem T, Taguas EV, Lorite I (2014a) Olive cultivation, its impact on soil erosion and its progression into yield impacts in Southern Spain in the past as a key to a future of increasing climate uncertainty. Agriculture 4(2):170–198CrossRefGoogle Scholar
  28. Gómez JA, Rodríguez-Carretero MT, Lorite IJ, Fereres E (2014b) Modeling to evaluate and manage climate change effects on water use in Mediterranean olive orchards with respect to cover crops and tillage management. Pract Appl Agric Syst Models Optim Use Ltd Water (practicalapplic). Google Scholar
  29. Gómez-Calero JA (2010) Olivar Sostenible: prácticas para una producción sostenible de olivar en Andalucía. Instituto de Agricultura Sostenible, Centro Superior de Investigaciones Científicas. Córdoba, España. Accessed 08 Nov 2017
  30. González E (2003) La importancia de la conservación del suelo frente a la erosión. Vida Rural 169:22–24Google Scholar
  31. Guerra CA, Metzger MJ, Maes J, Pinto-Correia T (2016) Policy impacts on regulating ecosystem services: looking at the implications of 60 years of landscape change on soil erosion prevention in a Mediterranean silvo-pastoral system. Landscape Ecol 31(2):271–290CrossRefGoogle Scholar
  32. Hein L (2007) Assessing the costs of land degradation: a case study for the Puentes catchment, southeast Spain. Land Degrad Dev 18(6):631–642CrossRefGoogle Scholar
  33. Helson O, Beaucour AL, Eslami J, Noumowe A, Gotteland P (2017) Physical and mechanical properties of soilcrete mixtures: soil clay content and formulation parameters. Constr Build Mater 131:775–783CrossRefGoogle Scholar
  34. Huang J, Tichit M, Poulot M, Darly S, Li S, Petit C, Aubry C (2015) Comparative review of multifunctionality and ecosystem services in sustainable agriculture. J Environ Manage 149:138–147CrossRefGoogle Scholar
  35. ICONA (Instituto Nacional para la Conservación de la Naturaleza/National Institute for Nature Conservation) (1991) Plan Nacional de lucha contra la erosión. Ministerio de Agricultura Pesca y alimentación. Madrid, Spain. Accessed 15 Jan 2018
  36. INE (Instituto Nacional de Estadística/Spanish Statistical Office) (2014) Agriculture and environment. Spain. Accessed 17 Dec 2014
  37. INE (Instituto Nacional de Estadística/Spanish Statistical Office) (2018) Economy. Spain. Accessed 05 Dec 2018
  38. Lal R (2001) Soil degradation by erosion. Land Degrad Develop 12(6):519–539CrossRefGoogle Scholar
  39. López-Pintor A, Sanz-Cañada J, Salas E, Rescia AJ (2018) Assessment of agri-environmental externalities in Spanish socio-ecological landscapes of olive groves. Sustainability 10(8):2640CrossRefGoogle Scholar
  40. MA (Millennium Ecosystem Assessment) (2005) Ecosystems and Human Well-being: Synthesis Report. Washington, DC: Island Press. Accessed 12 Dec 2017
  41. Mann S, Wüstemann H (2008) Multifunctionality and a new focus on externalities. J Socio-Econ 37(1):293–307CrossRefGoogle Scholar
  42. MAPAMA (Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente/Ministry of Agriculture and Fisheries, Food and Environment) (2017) Aceite de olive y aceituna de mesa. Spain. Accessed 08 Jan 2018
  43. Matthews R, Selman P (2006) Landscape as a focus for integrating human and environmental processes. J Agric Econ 57:199–212CrossRefGoogle Scholar
  44. Mohamad RS, Verrastro V, Al Bitar L, Roma R, Moretti M, Al Chami Z (2016) Effect of different agricultural practices on carbon emission and carbon stock in organic and conventional olive systems. Soil Res 54(2):173–181CrossRefGoogle Scholar
  45. Montanarella L (2007) Climate and land degradation. In: Sivakumar MVKN, Ndiangui N (eds) Trends in land degradation in Europe. Springer, Berlin, pp 83–104Google Scholar
  46. Moreira-Madueño JM (1991) Capacidad de uso y erosión de suelos. Una aproximación a la evaluación de tierras en Andalucía. Junta de Andalucía/Agencia del Medio Ambiente, SevillaGoogle Scholar
  47. O’Farrell PJ, Anderson PM (2010) Sustainable multifunctional landscapes: a review to implementation. Curr Opin Env Sust 2(1–2):59–65CrossRefGoogle Scholar
  48. Oleoestepa (2018). Accessed 12 Nov 2018
  49. Palese AM, Pergola M, Favia M, Xiloyannis C, Celano G (2013) A sustainable model for the management of olive orchards located in semi-arid marginal areas: some remarks and indications for policy makers. Environ Sci Policy 27:81–90CrossRefGoogle Scholar
  50. Peterson GD, Cumming GS, Carpenter SR (2003) Scenario planning: a tool for conservation in an uncertain world. Conserv Biol 17(2):358–366CrossRefGoogle Scholar
  51. POOLred (Price Information System in Cash Market Origin Olive Oil) (2017). Accessed 21 Jan 2018
  52. Rescia AJ, Ortega M (2018) Quantitative evaluation of the spatial resilience to the B. oleae pest in olive grove socio-ecological landscapes at different scales. Ecol Indic 84:820–827CrossRefGoogle Scholar
  53. Rescia AJ, Sanz-Cañada J, Del Bosque-González I (2017) A new mechanism based on landscape diversity for funding farmer subsidies. Agron Sustain Dev 37(2):9CrossRefGoogle Scholar
  54. Reyers B, O’Farrell PJ, Nel JL, Wilson K (2012) Expanding the conservation toolbox: conservation planning of multifunctional landscapes. Landscape Ecol 27(8):1121–1134CrossRefGoogle Scholar
  55. Rodríguez-Entrena M, Arriaza M, Gómez-Limón JA (2014) Determining economic and social factors in the adoption of cover crops under mower control in olive groves. Agroecol Sust Food 38(1):69–91CrossRefGoogle Scholar
  56. Ropero RF, Rumí R, Aguilera PA (2018) Bayesian networks for evaluating climate change influence in olive crops in Andalusia. Nat Resour Model, Spain. Google Scholar
  57. Sánchez Escobar F (2015) Sistemas complejos: una aplicación para el análisis de los balances energéticos y económicos en el agrosistema de olivar de Estepa. Doctoral Dissertation, Universidad de Sevilla, SpainGoogle Scholar
  58. SEISnet (Spanish Soil Information System) (2018). Accessed 28 May 2018
  59. STELLA (2010). STELLA 9.1.4. Dynamic System Software. Isee System Inc. Accessed 29 Dec 2017
  60. Termorshuizen JW, Opdam P (2009) Landscape services as a bridge between landscape ecology and sustainable development. Landscape Ecol 24(8):1037–1052CrossRefGoogle Scholar
  61. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671CrossRefGoogle Scholar
  62. Torres-Miralles M, Grammatikopoulou I, Rescia AJ (2017) Employing contingent and inferred valuation methods to evaluate the conservation of olive groves and associated ecosystem services in Andalusia (Spain). Ecosyst Serv 26:258–269CrossRefGoogle Scholar
  63. Wischmeier WH, Smith DD (1960) A universal soil-loss equation to guide conservation farm planning. Transactions 7th int. Congr. Soil Sci. 1: 418-425. Record number: 19621901607Google Scholar
  64. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses. A guide to conservation planning. Agriculture Handbook No. 537. USDA/Science and Education Administration, US. Govt. Printing Office, Washington, DC. p. 58.
  65. Zaccarelli N, Petrosillo I, Zurlini G, Riitters KH (2008) Source/sink patterns of disturbance and cross-scale mismatches in a panarchy of social-ecological landscapes. Ecol Soc 13(1):26CrossRefGoogle Scholar
  66. Zuazo VHD, Pleguezuelo CRR (2009) Soil-erosion and runoff prevention by plant covers: a review. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer, Dordrecht, pp 785–812CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Biodiversidad, Ecología y Evolución, Unidad Docente de Ecología, Facultad de Ciencias BiológicasUniversidad Complutense de MadridMadridSpain
  2. 2.Institute of Economics, Geography and Demography (IEGD), Spanish National Research Council (CSIC)MadridSpain

Personalised recommendations