Advertisement

Agriculturally productive yet biodiverse: human benefits and conservation values along a forest-agriculture gradient in Southern Ethiopia

  • Frédéric BaudronEmail author
  • Jannik Schultner
  • Jean-Yves Duriaux
  • Sarah E. Gergel
  • Terry Sunderland
Research Article

Abstract

Context

It remains unclear how agricultural landscapes can best serve multiple purposes such as simultaneously maintaining agricultural productivity and conserving biodiversity.

Objectives

Our objective was to assess how important components of biodiversity changed with different land covers, and to uncover whether particular landscapes could simultaneously deliver high agricultural productivity and biodiversity conservation.

Methods

In agriculture-forest mosaics of Southern Ethiopia, we assessed tree and bird biodiversity using detrended correspondence analyses and binomial generalized linear mixed effects models in four zones differing in cropland, grassland, and tree cover as well as agricultural production (crop, livestock feed and fuel).

Results

Tree and bird communities differed along gradients of cropland, grassland, and tree cover, implying that different species benefit from different types of land management. Bird species with smaller ranges were most abundant in the agricultural zone with highest tree cover, exceeding that of even the forest zone, and demonstrating the value of complex mosaics for conservation. The agricultural zone with the highest tree cover also had the highest total productivity in terms of crop, feed, and fuel, perhaps supported in part by ecosystem services provided by invertebrate-eating birds and trees.

Conclusions

Our results challenge current paradigms of agricultural intensification and biodiversity conservation in human dominated landscapes and point to the possibility of achieving both in multifunctional landscapes. Our work also highlights the importance of considering measures of agricultural productivity beyond mere crop yields when assessing the performance of multifunctional landscapes.

Keywords

Landscape approach Ecological intensification Landscape mosaics Land sharing Land sparing Ecosystem services Multi-functional landscapes 

Notes

Acknowledgements

This work was implemented by CIMMYT, CIFOR, Leuphana University, and UBC as part of the project ‘The Agrarian Change Project’, made possible by the generous support of the Department for International Development (DFID), the United States Agency for International Development (USAID), and CRP WHEAT (www.wheat.org). Support for SEG was also provided by NSERC Discovery Grants Program. Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of DFID, USAID, and CRP WHEAT. We thank Kedir Gemedo, Hamid Tura, and Genemo Teshite for assisting with fieldwork. We thank three anonymous reviewers for their critical and constructive comments.

Supplementary material

10980_2019_770_MOESM1_ESM.docx (227 kb)
Supplementary material 1 (DOCX 226 kb)

References

  1. Ajayi OC, Place F, Akinnifesi FK, Sileshi GW (2011) Agricultural success from Africa: the case of fertilizer tree systems in southern Africa (Malawi, Tanzania, Mozambique, Zambia and Zimbabwe). Int J Agric Sustain 9:129–136.  https://doi.org/10.3763/ijas.2010.0554 CrossRefGoogle Scholar
  2. Baudron F, Duriaux J-Y, Remans R, Yang K, Sunderland T (2017) Indirect contributions of forests to dietary diversity in Southern Ethiopia. Ecol Soc 22:28.  https://doi.org/10.5751/ES-09267-220228 CrossRefGoogle Scholar
  3. Baudron F, Giller KE (2014) Agriculture and nature: trouble and strife? Biol Conserv 170:232–245.  https://doi.org/10.1016/j.biocon.2013.12.009 CrossRefGoogle Scholar
  4. Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1394–1404.  https://doi.org/10.1111/j.1461-0248.2009.01387.x CrossRefGoogle Scholar
  5. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188.  https://doi.org/10.1016/S0169-5347(03)00011-9 CrossRefGoogle Scholar
  6. Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc Biol Sci 273:1715–1727.  https://doi.org/10.1098/rspb.2006.3530 CrossRefGoogle Scholar
  7. Blanche KR, Ludwig JA, Cunningham SA (2006) Proximity to rainforest enhances pollination and fruit set in orchards. J Appl Ecol 43:1182–1187.  https://doi.org/10.1111/j.1365-2664.2006.01230.x CrossRefGoogle Scholar
  8. Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238CrossRefGoogle Scholar
  9. Bugaje IM (2006) Renewable energy for sustainable development in Africa: a review. Renew Sustain Energy Rev 10:603–612.  https://doi.org/10.1016/j.rser.2004.11.002 CrossRefGoogle Scholar
  10. Chazdon RL, Harvey CA, Komar O, Griffith DM, Ferguson BG, Martinez-Ramos M, Morales H, Nigh R, Soto-Pinto L, van Breugel M, Philpott SM (2009) Beyond reserves: a research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica 41:142–153CrossRefGoogle Scholar
  11. Chikowo R, Mapfumo P, Nyamugafata P, Nyamadzawo G, Giller KE (2003) Nitrate-N dynamics following improved fallows and maize root development in a Zimbabwean sandy clay loam. Agrofor Syst 59:187–195.  https://doi.org/10.1023/B:AGFO.0000005219.07409.a0 CrossRefGoogle Scholar
  12. Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Buchori D, Cicuzza D, Darras K, Putra DD, Erasmi S, Pitopang R, Schmidt C, Schulze CH, Seidel D, Steffan-Dewenter I, Stenchly K, Vidal S, Weist M, Wielgoss AC, Tscharntke T (2011) Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci U S A 108:8311–8316.  https://doi.org/10.1073/pnas.1016799108 CrossRefGoogle Scholar
  13. Dauber J, Hirsch M, Simmering D, Waldhardt R, Otte A, Wolters V (2003) Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agric Ecosyst Environ 98:321–329.  https://doi.org/10.1016/S0167-8809(03)00092-6 CrossRefGoogle Scholar
  14. Dix ME, Harrell MO, Wright RJ (1995) Influences of trees on abundance of natural enemies of insect pests: a review. Agrofor Syst 29:303–311CrossRefGoogle Scholar
  15. Donald PF, Evans AD (2006) Habitat connectivity and matrix restoration: the wider implications of agri environment schemes. J Appl Ecol 43:209–218.  https://doi.org/10.1111/j.1365-2664.2006.01146.x CrossRefGoogle Scholar
  16. Doré T, Makowski D, Malézieux E, Munier-Jolain N, Tchamitchian M, Tittonell PA (2011) Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron 34:197–210CrossRefGoogle Scholar
  17. Duriaux Chavarría J-Y, Baudron F, Sunderland T (2018) Retaining forests within agricultural landscapes as a pathway to sustainable intensification: evidence from Southern Ethiopia. Agric Ecosyst Environ 263: 41–52.  https://doi.org/10.1016/j.agee.2018.04.020 CrossRefGoogle Scholar
  18. Edwards S, Demissew S, Hedberg I (1997) Flora of Ethiopia and Eritrea, Volume 6: Hydrocharitaceae to Arecaceae. Addis Ababa, EthiopiaGoogle Scholar
  19. Edwards S, Hedberg I (2000) Flora of Ethiopia, Volume 2, part 1: Magnoliaceae to Flacourtiaceae. Addis Ababa, EthiopiaGoogle Scholar
  20. Edwards S, Tadesse M, Hedberg I (1995) Flora of Ethiopia and Eritrea, Volume 2, part 2: Canellaceae to Euphorbiacea. Addis Ababa, EthiopiaGoogle Scholar
  21. Fa JE, Currie D, Meeuwig J (2003) Bushmeat and food security in the Congo Basin: linkages between wildlife and people’s future. Environ Conserv 30:71–78.  https://doi.org/10.1017/S0376892903000067 CrossRefGoogle Scholar
  22. Felipe-Lucia MR, Comín FA, Bennett EM (2014) Interactions among ecosystem services across land uses in a floodplain agroecosystem. Ecol Soc.  https://doi.org/10.5751/es-06249-190120 Google Scholar
  23. Fischer J, Lindenmayer DB, Manning AD (2006) Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Front Ecol Environ 4:80–86.  https://doi.org/10.1890/1540-9295(2006)004%5b0080:BEFART%5d2.0.CO;2 CrossRefGoogle Scholar
  24. Foli S, Reed J, Clendenning J, Petrokofsky G, Padoch C, Sunderland TCH (2014) To what extent does the presence of forests and trees contribute to food production in humid and dry forest landscapes?: a systematic review protocol. Environ Evid 3:15.  https://doi.org/10.1186/2047-2382-3-15 CrossRefGoogle Scholar
  25. Franklin JF, Lindenmayer DB (2009) Importance of matrix habitats in maintaining biological diversity. Proc Natl Acad Sci 106:349–350.  https://doi.org/10.1073/pnas.0812016105 CrossRefGoogle Scholar
  26. Gabriel D, Sait SM, Kunin WE, Benton TG (2013) Food production vs. biodiversity: comparing organic and conventional agriculture. J Appl Ecol 50:355–364.  https://doi.org/10.1111/1365-2664.12035 CrossRefGoogle Scholar
  27. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I, Benjamin F, Boreux V, Cariveau D, Chacoff NP, Dudenhöffer JH, Freitas BM, Ghazoul J, Greenleaf SS, Hipólito J, Holzschuh A, Howlett B, Isaacs R, Javorek SK, Kennedy CM, Krewenka KM, Krishnan S, Mandelik Y, Mayfield MM, Motzke I, Munyuli T, Nault BA, Otieno M, Petersen J, Pisanty G, Potts SG, Rader R, Ricketts TH, Rundlöf M, Seymour CL, Schüepp C, Szentgyörgyi H, Taki H, Tscharntke T, Vergara CH, Viana BF, Wanger TC, Westphal C, Williams N, Klein AM (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611.  https://doi.org/10.1126/science.1230200 CrossRefGoogle Scholar
  28. Geifus F (2008) 80 tools for participatory development: appraisal, planning, follow-up and evaluation. Inter-American Institute for Cooperation on Agriculture (IICA), San Jose, Costa RicaGoogle Scholar
  29. Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA, Laurance WF, Lovejoy TE, Sodhi NS (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381.  https://doi.org/10.1038/nature10425 CrossRefGoogle Scholar
  30. Giller KE, Tittonell PA, Rufino MC, van Wijk MT, Zingore S, Mapfumo P, Adjei-Nsiah S, Herrero M, Chikowo R, Corbeels M, Rowe EC, Baijukya F, Mwijage A, Smith J, Yeboah E, van der Burg WJ, Sanogo OM, Misiko M, De Ridder N, Karanja S, Kaizzi C, K’ungu J, Mwale M, Nwaga D, Pacini GC, Vanlauwe B (2011) Communicating complexity: integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agric Syst 104:191–203.  https://doi.org/10.1016/j.agsy.2010.07.002 CrossRefGoogle Scholar
  31. Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555.  https://doi.org/10.1126/science.1106049 CrossRefGoogle Scholar
  32. Gryseels G (1988) Role of livestock on mixed smallholder farms in the Ethiopian Highlands: a case study from the Baso and Worena Wereda near Debre Berhan. Wageningen UniversityGoogle Scholar
  33. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song D-X, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:1–9.  https://doi.org/10.1126/sciadv.1500052 CrossRefGoogle Scholar
  34. Hedberg I (2006) Flora of Ethiopia, Volume 5: Gentianaceae to Cyclocheilaceae. Addis Ababa, EthiopiaGoogle Scholar
  35. Hedberg I, Edwards S (1989) Flora of Ethiopia, Volume 3: Pittosporaceae to Araliaceae. Uppsala, SwedenGoogle Scholar
  36. Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetation 42:47–58CrossRefGoogle Scholar
  37. Hladik CM, Bahuchet S, De Garine I (1990) Food and nutrition in the African rain forest. Unesca/MAB, ParisGoogle Scholar
  38. Houérou HN Le, Hoste CH (1977) Rangeland production and annual rainfall relations in the mediterranean basin and in the African sahelo-sudanian zone. J Range Manag 30:181–189.  https://doi.org/10.2307/3897463 CrossRefGoogle Scholar
  39. Ickowitz A, Powell B, Salim MA, Sunderland TCH (2014) Dietary quality and tree cover in Africa. Glob Environ Chang 24:287–294.  https://doi.org/10.1016/j.gloenvcha.2013.12.001 CrossRefGoogle Scholar
  40. Iiyama M, Neufeldt H, Dobie P, Njenga M, Ndegwa G, Jamnadass R (2014) The potential of agroforestry in the provision of sustainable woodfuel in sub-Saharan Africa. Curr Opin Environ Sustain 6:138–147.  https://doi.org/10.1016/j.cosust.2013.12.003 CrossRefGoogle Scholar
  41. Kay BJ, Twigg LE, Korn TJ, Nicol HI (1994) The use of artifical perches to increase predation on house mice (Mus domesticus) by raptors. Wildl Res 21:95–105CrossRefGoogle Scholar
  42. Kleijn D, Kohler F, Báldi A, Batáry P, Concepción ED, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall EJP, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc Biol Sci 276:903–909.  https://doi.org/10.1098/rspb.2008.1509 CrossRefGoogle Scholar
  43. Koh LP (2008) Birds defend oil palms from herbivorous insects. Ecol Appl 18:821–825CrossRefGoogle Scholar
  44. Koh LP, Wilcove DS (2008) Is oil palm agriculture really destroying tropical biodiversity? Conserv Lett 1:60–64.  https://doi.org/10.1111/j.1755-263X.2008.00011.x CrossRefGoogle Scholar
  45. Kremen C, Merenlender AM (2018) Landscapes that work for biodiversity and people. Science 362:1–9.  https://doi.org/10.1126/science.aau6020 CrossRefGoogle Scholar
  46. Law EA, Meijaard E, Bryan BA, Mallawaarachchi T, Koh LP, Wilson KA (2015) Better land-use allocation outperforms land sparing and land sharing approaches to conservation in Central Kalimantan, Indonesia. Biol Conserv 186:276–286.  https://doi.org/10.1016/j.biocon.2015.03.004 CrossRefGoogle Scholar
  47. Leakey RRB (1996) Definition of agroforestry revisited. Agroforestry 8:5–7Google Scholar
  48. Levis C, Costa FRC, Bongers F, Peña-Claros M, Clement CR, Junqueira AB, Neves EG, Tamanaha EK, Figueiredo FOG, Salomão RP, Castilho CV, Magnusson WE, Phillips OL, Guevara JE, Sabatier D, Molino J-F, Cardenas Lopez D (2017) Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 931:925–931.  https://doi.org/10.1126/science.aal0157 CrossRefGoogle Scholar
  49. Maezumi SY, Alves D, Robinson M, de Souza JG, Levis C, Barnett RL, Almeida de Oliveira E, Urrego D, Schaan D, Iriarte J (2018) The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat Plants 4:540–547.  https://doi.org/10.1038/s41477-018-0205-y CrossRefGoogle Scholar
  50. Milder JC, Buck LE, DeClerck F, Scherr SJ (2012) Landscape approaches to achieving food production, natural resource conservation, and the millennium development goals. In: Integrating ecology and poverty reduction. Springer, New YorkGoogle Scholar
  51. Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. Washington, D.CGoogle Scholar
  52. Mols CMM, Visser ME (2007) Great tits (Parus major) reduce caterpillar damage in commercial apple orchards. PLoS ONE 2:888–899CrossRefGoogle Scholar
  53. Nasi R, Taber A, Van Vliet N (2011) Empty forests, empty stomachs? Bushmeat and livelihoods in the Congo and Amazon Basins. Int For Rev 13:355–368.  https://doi.org/10.1505/146554811798293872 Google Scholar
  54. Ong CK, Black CR, Wallace JS, Khan AAH, Lott JE, Jackson NA, Howard SB, Smith DM (2000) Productivity, microclimate and water use in Grevillea robusta-based agroforestry systems on hillslopes in semi-arid Kenya. Agric Ecosyst Environ 80:121–141.  https://doi.org/10.1016/S0167-8809(00)00144-4 CrossRefGoogle Scholar
  55. Owen-Smith N (1988) Megaherbivores; the influence of very large body size on ecology, Cambridge. Cambridge, UKGoogle Scholar
  56. Pasari JR, Levi T, Zavaleta ES, Tilman D (2013) Several scales of biodiversity affect ecosystem multifunctionality. Proc Natl Acad Sci 110:15164–15168.  https://doi.org/10.1073/pnas.1219683110 CrossRefGoogle Scholar
  57. Pascual U, Balvanera P, Díaz S, Pataki G, Roth E, Stenseke M, Watson RT, Başak Dessane E, Islar M, Kelemen E, Maris V, Quaas M, Subramanian SM, Wittmer H, Adlan A, Ahn SE, Al-Hafedh YS, Amankwah E, Asah ST, Berry P, Bilgin A, Breslow SJ, Bullock C, Cáceres D, Daly-Hassen H, Figueroa E, Golden CD, Gómez-Baggethun E, González-Jiménez D, Houdet J, Keune H, Kumar R, Ma K, May PH, Mead A, O’Farrell P, Pandit R, Pengue W, Pichis-Madruga R, Popa F, Preston S, Pacheco-Balanza D, Saarikoski H, Strassburg BB, van den Belt M, Verma M, Wickson F, Yagi N (2017) Valuing nature’s contributions to people: the IPBES approach. Curr Opin Environ Sustain 26–27:7–16.  https://doi.org/10.1016/j.cosust.2016.12.006 CrossRefGoogle Scholar
  58. Phalan B, Green RE, Balmford A (2014) Closing yield gaps: perils and possibilities for biodiversity conservation. Philos Trans R Soc B Biol Sci 369:20120285.  https://doi.org/10.1098/rstb.2012.0285 CrossRefGoogle Scholar
  59. Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291.  https://doi.org/10.1126/science.1208742 CrossRefGoogle Scholar
  60. Reed J, Van Vianen J, Deakin EL, Barlow J, Sunderland T (2016) Integrated landscape approaches to managing social and environmental issues in the tropics: learning from the past to guide the future. Glob Chang Biol 22:2540–2554.  https://doi.org/10.1111/gcb.13284 CrossRefGoogle Scholar
  61. Reed J, van Vianen J, Foli S, Clendenning J, Yang K, MacDonald M, Petrokofsky G, Padoch C, Sunderland T (2017) Trees for life: The ecosystem service contribution of trees to food production and livelihoods in the tropics. For Policy Econ.  https://doi.org/10.1016/j.forpol.2017.01.012 Google Scholar
  62. Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein A-M, Mayfield MM, Morandin LA, Ochieng’ A, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515.  https://doi.org/10.1111/j.1461-0248.2008.01157.x CrossRefGoogle Scholar
  63. Robinson TP, Thornton PK, Franceschini G, Kruska RL, Chiozza F, Notenbaert A, Cecchi G, Herrero M, Epprecht M, Fritz S, You L, Conchedda G, See L (2011) Global livestock production systems. Italy, RomeGoogle Scholar
  64. Rodrigues ASL, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Cowling RM, Fishpool LDC, da Fonseca GAB, Gaston KJ, Hoffmann M, Long JS, Marquet PA, Pilgrim JD, Pressey RL, Schipper J, Sechrest W, Stuart SN, Underhill LG, Waller RW, Watts MEJ, Yan X (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643.  https://doi.org/10.1038/nature02422 CrossRefGoogle Scholar
  65. Samish M (2000) Biocontrol of ticks. Ann N Y Acad Sci 916:172–178.  https://doi.org/10.1111/j.1749-6632.2000.tb05287.x CrossRefGoogle Scholar
  66. Shiferaw Sida T, Baudron F, Kim H, Giller KE (2018) Climate-smart agroforestry: faidherbia albida trees buffer wheat against climatic extremes in the Central Rift Valley of Ethiopia. Agric For Meteorol 248:339–347.  https://doi.org/10.1016/j.agrformet.2017.10.013 CrossRefGoogle Scholar
  67. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Publishing, New YorkGoogle Scholar
  68. Springmann M, Clark M, Mason-D’Croz D, Wiebe K, Bodirsky BL, Lassaletta L, de Vries W, Vermeulen SJ, Herrero M, Carlson KM, Jonell M, Troell M, DeClerck F, Gordon LJ, Zurayk R, Scarborough P, Rayner M, Loken B, Fanzo J, Godfray HCJ, Tilman D, Rockström J, Willett W (2018) Options for keeping the food system within environmental limits. Nature 562:519–525.  https://doi.org/10.1038/s41586-018-0594-0 CrossRefGoogle Scholar
  69. Swift MJ, Izac AMN, Van Noordwijk M (2004) Biodiversity and ecosystem services in agricultural landscapes - Are we asking the right questions? Agric Ecosyst Environ 104:113–134.  https://doi.org/10.1016/j.agee.2004.01.013 CrossRefGoogle Scholar
  70. Tesfaye G (2007) Structure, biomass and net primary production in dry tropical afromontane forest in Ethiopia. Addis Ababa UniversityGoogle Scholar
  71. Tittonell PA (2014) Ecological intensification of agriculture-sustainable by nature. Curr Opin Environ Sustain 8:53–61.  https://doi.org/10.1016/j.cosust.2014.08.006 CrossRefGoogle Scholar
  72. Tomscha SA, Gergel SE (2016) Ecosystem service trade-offs and synergies misunderstood without landscape history. Ecol Soc 21:43.  https://doi.org/10.13140/RG.2.1.4882.9529 CrossRefGoogle Scholar
  73. Vandermeer J, Perfecto I (2005) The future of farming and conservation. Science 308:1257–1258.  https://doi.org/10.1126/science.308.5726.1257b CrossRefGoogle Scholar
  74. Vandermeer J, Van Noordwijk M, Anderson J, Ong C, Perfecto I (1998) Global change and multi-species agroecosystems: concepts and issues. Agric Ecosyst Environ 67:1–22.  https://doi.org/10.1016/S0167-8809(97)00150-3 CrossRefGoogle Scholar
  75. Vandermeer J, Aga A, Allgeier J, Badgley C, Baucom R, Blesh J, Shapiro LF, Jones AD, Hoey L, Jain M, Perfecto I, Wilson ML (2018) Feeding prometheus: an interdisciplinary approach for solving the global food crisis. Front Sustain Food Syst 2:1–4.  https://doi.org/10.3389/fsufs.2018.00039 CrossRefGoogle Scholar
  76. van der Waal C, Kool A, Meijer SS, Kohi E, Heitkönig IMA, de Boer WF, van Langevelde F, Grant RC, Peel MJS, Slotow R, de Knegt HJ, Prins HHT, de Kroon H (2011) Large herbivores may alter vegetation structureof semi-arid savannas through soil nutrient mediation. Oecologia 165:1095–1107.  https://doi.org/10.1007/s00442-010-1899-3 CrossRefGoogle Scholar
  77. Venter O, Sanderson EW, Magrach A, Allan JR, Beher J, Jones KR, Possingham HP, Laurance WF, Wood P, Fekete BM, Levy MA, Watson JEM (2016) Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat Commun 7:1–11.  https://doi.org/10.1038/ncomms12558 CrossRefGoogle Scholar
  78. Vera FWM (2009) Large-scale nature development—the Oostvaardersplassen. Br Wildl 20(5):28–36Google Scholar
  79. Vinceti B, Eyzaguirre P, Johns T (2008) The nutritional role of forest plant foods for rural communities. In: Colfer CJP (ed) Human health and forests: a global overview of issues, practice and policy, Earthscan. London, UKGoogle Scholar
  80. Watt M, Evans JR (1999) Proteoid roots. Physiology and development. Plant Physiol 121:317–323CrossRefGoogle Scholar
  81. Wikramanayake ED, Hathurusinghe HS, Janaka HK, Jayasinghe LKA, Fernando R, Weerakoon DK, Gunawardene MD (2004) The human-elephant conflict in Sri Lanka: lessons for mitigation, management and conservation from traditional land-use patterns. In: Endangered elephants: past, present, and future: symposium on human-elephant relationships and conflicts, Sri Lanka, September 2003. Biodiversity and Elephant Conservation Trust, p 164Google Scholar
  82. Willis KJ, Gillson L, Brncic TM (2004) How “virgin” is virgin rainforest? Science 304:402–403.  https://doi.org/10.1126/science.1093991 CrossRefGoogle Scholar
  83. Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W (2014) EltonTraits 1.0: Specieslevel foraging attributes of the world’s birds and mammals. Ecology 95:2027–2027.  https://doi.org/10.1890/13-1917.1 CrossRefGoogle Scholar
  84. Wright HL, Lake IR, Dolman PM (2012) Agriculture-a key element for conservation in the developing world. Conserv Lett 5:11–19.  https://doi.org/10.1111/j.1755-263X.2011.00208.x CrossRefGoogle Scholar
  85. Wu J (2013) Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landsc Ecol 28:999–1023.  https://doi.org/10.1007/s10980-013-9894-9 CrossRefGoogle Scholar
  86. Young A (1989) Agroforestry for soil conservation. CAB Intern, WallingfordGoogle Scholar
  87. Zomer R, Trabucco A, Coe R, Place F, van Noordwijk M, Xu J (2014) Trees on farms: an update and reanalysis of agroforestry’s global extent and socio-ecological characteristics. Bogor, IndonesiaGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.International Maize and Wheat Improvement Centre (CIMMYT)-ZimbabweHarareZimbabwe
  2. 2.Faculty of SustainabilityLeuphana University LüneburgLüneburgGermany
  3. 3.Department of Forest and Conservation SciencesForest Sciences Centre 3024VancouverCanada
  4. 4.Centre for International Forestry Research (CIFOR)BogorIndonesia

Personalised recommendations