Landscape Ecology

, Volume 34, Issue 1, pp 175–186 | Cite as

Get larger or grow longer wings? Impacts of habitat area and habitat amount on orthopteran assemblages and populations in semi-natural grasslands

  • Sebastian KönigEmail author
  • Jochen Krauss
Research Article



Habitat loss and fragmentation are major threats to biodiversity and can change community composition, species traits and intraspecific morphology. Calcareous grasslands are hotspots of diversity for plants and invertebrates in Europe, but habitat area and habitat amount declined strongly over the last century.


It is controversially discussed how habitat area and habitat amount independently affect species assemblages, traits and morphology.


With variable transects we recorded orthopteran assemblages on 22 calcareous grasslands along independent gradients of habitat area and habitat amount in a 1 km matrix. We measured male body size and wing length of two abundant grasshopper species.


Orthopteran assemblages showed positive species–area and abundance–area relationships with habitat area and (extenuated) with habitat amount. We found a stronger effect of habitat area reduction on specialists and endangered species, compared to generalists and non-threatened species. The species Chorthippus biguttulus and Gomphocerippus rufus had a larger body size (fitness-related trait) in landscapes with high habitat area and habitat amount. Grasshoppers had longer wings in relation to body size (dispersal-related trait) in landscapes with a low amount of habitat.


Our findings emphasize the value of large patches and landscapes with high habitat amount to (i) enhance species richness and abundances, (ii) protect threatened species, (iii) ensure long term survival of habitat-specialists and (iv) preserve individuals with high fitness traits (large body size). Conservation strategies for Orthoptera should focus on large habitats and areas with a high habitat amount.


Body size Conservation Grasshopper Habitat fragmentation Intraspecific traits Wing length 



We thank Gudrun Schneider for selecting the study sites, the editor, two anonymous reviewers, Jie Zhang, Fabian A. Boetzl and Natalie Foley for constructive comments on the manuscript, Fabian A. Boetzl for statistical advice, Julian Krause for assistance, and the Nature Conservation authorities for permissions.

Author contributions

JK and SK designed the study, SK analysed the data, SK conducted the field work and wrote the first draft of the manuscript, SK determined Orthoptera, both authors interpreted the results and revised the manuscript.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10980_2018_762_MOESM1_ESM.pdf (50 kb)
Supplementary material 1 (PDF 50 kb)
10980_2018_762_MOESM2_ESM.pdf (112 kb)
Supplementary material 2 (PDF 112 kb)


  1. Batáry P, Orci KM, Baldi A, Kleijn D, Kisbenedek T, Erdos S (2007) Effects of local and landscape scale and cattle grazing intensity on Orthoptera assemblages of the Hungarian Great Plain. Basic Appl Ecol 8:280–290CrossRefGoogle Scholar
  2. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  3. Bell AJ, Phillips ID, Nielsen SE, Spence JR (2017) Species traits modify the species–area relationship in ground-beetle (Coleoptera: Carabidae) assemblages on islands in a boreal lake. PLoS ONE 12:16Google Scholar
  4. Berwaerts K, Van Dyck H, Aerts P (2002) Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. Funct Ecol 16:484–491CrossRefGoogle Scholar
  5. Bonte D, Lens L, Maelfait JP, Hoffmann M, Kuijken E (2003) Patch quality and connectivity influence spatial dynamics in a dune wolfspider. Oecologia 135:227–233CrossRefPubMedGoogle Scholar
  6. Brown WD, Wideman J, Andrade MCB, Mason AC, Gwynne DT (1996) Female choice for an indicator of male size in the song of the black-horned tree cricket Oecanthus nigricornis (Orthoptera: Gryllidae: Oecanthinae). Evolution 50:2400–2411CrossRefPubMedGoogle Scholar
  7. Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809CrossRefGoogle Scholar
  8. Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev 85:139–169CrossRefPubMedGoogle Scholar
  9. Classen A, Steffan-Dewenter I, Kindeketa WJ, Peters MK (2017) Integrating intraspecific variation in community ecology unifies theories on body size shifts along climatic gradients. Funct Ecol 31:768–777CrossRefGoogle Scholar
  10. Denning KR, Foster BL (2018) Taxon-specific association of tallgrass prairie flower visitors with site-scale forb communities and landscape composition and configuration. Biol Conserv 227:74–81CrossRefGoogle Scholar
  11. Diacon-Bolli J, Dalang T, Holderegger R, Bürgi M (2012) Heterogeneity fosters biodiversity: linking history and ecology of dry calcareous grasslands. Basic Appl Ecol 13:641–653CrossRefGoogle Scholar
  12. Diekötter T, Wamser S, Dörner T, Wolters V, Birkhofer K (2016) Organic farming affects the potential of a granivorous carabid beetle to control arable weeds at local and landscape scales. Agric For Entomol 18:167–173CrossRefGoogle Scholar
  13. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663CrossRefGoogle Scholar
  14. Fischer J, Steinlechner D, Zehm A, Poniatowski D, Fartmann T, Beckmann A, Stettmer C (2016) Die Heuschrecken Deutschlands und Nordtirols: Bestimmen - Beobachten - Schützen. Quelle und Meyer, WiebelsheimGoogle Scholar
  15. Franzén M, Schweiger O, Betzholtz PE (2012) Species–area relationships are controlled by species traits. PLoS ONE 7:10Google Scholar
  16. Fusser MS, Pfister SC, Entling MH, Schirmel J (2017) Effects of field margin type and landscape composition on predatory carabids and slugs in wheat fields. Agric Ecosyst Environ 247:182–188CrossRefGoogle Scholar
  17. Gu HN, Hughes J, Dorn S (2006) Trade-off between mobility and fitness in Cydia pomonella L. (Lepidoptera: Tortricidae). Ecol Entomol 31:68–74CrossRefGoogle Scholar
  18. Haddad NM, Gonzalez A, Brudvig LA, Burt MA, Levey DJ, Damschen EI (2017) Experimental evidence does not support the habitat amount hypothesis. Ecography 40:48–55CrossRefGoogle Scholar
  19. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzales A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:9CrossRefGoogle Scholar
  20. Hambäck PA, Summerville KS, Steffan-Dewenter I, Krauss J, Englund G, Crist TO (2007) Habitat specialization, body size, and family identity explain lepidopteran density-area relationships in a cross-continental comparison. Proc Natl Acad Sci USA 104:8368–8373CrossRefPubMedGoogle Scholar
  21. Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758CrossRefPubMedGoogle Scholar
  22. Hanski I, Saastamoinen M, Ovaskainen O (2006) Dispersal-related life-history trade-offs in a butterfly metapopulation. J Anim Ecol 75:91–100CrossRefPubMedGoogle Scholar
  23. Harz K (1975) Die Orthopteren Europas, vol 1. Dr. W. Junk B.V, Den HaagGoogle Scholar
  24. Harz K (1976) Die Orthopteren Europas, vol 2. Dr. W. Junk B.V, Den HaagGoogle Scholar
  25. Heidinger IMM, Hein S, Bonte D (2010) Patch connectivity and sand dynamics affect dispersal-related morphology of the blue-winged grasshopper Oedipoda caerulescens in coastal grey dunes. Insect Conserv Divers 3:205–212Google Scholar
  26. Hill JK, Thomas CD, Blakeley DS (1999) Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 121:165–170CrossRefPubMedGoogle Scholar
  27. Hodgson JG, Montserrat-Martí G, Tallowin J, Thompson K, Díaz S, Cabido M, Grime JP, Wilson PJ, Band SR, Bogard A, Cabido R, Cáceres D, Castro-Díez P, Ferrer C, Maestro-Martínez M, Pérez-Rontomé MC, Charles M, Cornelissen JHC, Dabbert S, Pérez-Harguindeguy N, Krimly T, Sijtsma FJ, Strijker D, Vendramini F, Guerrero-Campo, Hynd A, Jones G, Romo-Díez, de Torres Espuny L, Villar-Salvador P, Zak MR (2005) How much will it cost to save grassland diversity? Biol Conserv 122:263–273CrossRefGoogle Scholar
  28. Hughes CL, Hill JK, Dytham C (2003) Evolutionary trade-offs between reproduction and dispersal in populations at expanding range boundaries. Proc R Soc B Biol Sci 270:S147–S150CrossRefGoogle Scholar
  29. Ingrisch S, Köhler G (1998) Die Heuschrecken Mitteleuropas. Westarp Wissenschaften, MagdeburgGoogle Scholar
  30. Jamison BE, Robel RJ, Pontius JS, Applegate RD (2002) Invertebrate biomass: associations with lesser prairie-chicken habitat use and sand sagebrush density in southwestern Kansas. Wildl Soc Bull 30:517–526Google Scholar
  31. Jentzsch A, Köhler G, Schumacher J (2003) Environmental stress and fluctuating asymmetry in the grasshopper Chorthippus parallelus (Acrididae: Gomphocerinae). Zoology 106:117–125CrossRefPubMedGoogle Scholar
  32. Johnston T, Pietrewicz A (2014) Issues in the ecological study of learning. Psychology Press, New YorkCrossRefGoogle Scholar
  33. Jonsen ID, Fahrig L (1997) Response of generalist and specialist insect herbivores to landscape spatial structure. Landscape Ecol 12:185–197CrossRefGoogle Scholar
  34. Kaňuch P, Jarčuška B, Schlosserová D, Sliacka A, Paule L, Krištín A (2012) Landscape configuration determines gene flow and phenotype in a flightless forest-edge ground-dwelling bush-cricket, Pholidoptera griseoaptera. Evol Ecol 26:1331–1343CrossRefGoogle Scholar
  35. Keller D, van Strien MJ, Herrmann M, Bolliger J, Edwards PJ, Ghazoul J, Holderegger R (2013) Is functional connectivity in common grasshopper species affected by fragmentation in an agricultural landscape? Agric Ecosyst Environ 175:39–46CrossRefGoogle Scholar
  36. Kelly CD, Tawes BR, Worthington AM (2014) Evaluating indices of body condition in two cricket species. Ecol Evol 4:4476–4487CrossRefPubMedPubMedCentralGoogle Scholar
  37. Krauss J, Alfert T, Steffan-Dewenter I (2009) Habitat area but not habitat age determines wild bee richness in limestone quarries. J Appl Ecol 46:194–202CrossRefGoogle Scholar
  38. Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30:889–900CrossRefGoogle Scholar
  39. Lawton JH (1999) Are there general laws in ecology? Oikos 84:177–192CrossRefGoogle Scholar
  40. Moilanen A, Hanski I (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–2515CrossRefGoogle Scholar
  41. Newbold T, Scharlemann JPW, Butchart SHM, Şekercioğlu CH, Alkemade R, Booth H, Purves DW (2013) Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc R Soc B Biol Sci 280:8CrossRefGoogle Scholar
  42. Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett J, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50CrossRefPubMedGoogle Scholar
  43. Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Pöyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979PubMedGoogle Scholar
  44. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. R package version 2.5-1.
  45. Perović D, Gámez-Virués S, Börschig C, Klein AM, Krauss J, Steckel J, Rothenwöhrer C, Erasmi S, Tscharntke T, Westphal C (2015) Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. J Appl Ecol 52:505–513CrossRefGoogle Scholar
  46. Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:987CrossRefGoogle Scholar
  47. Polilov AA, Makarova AA (2017) The scaling and allometry of organ size associated with miniaturization in insects: a case study for Coleoptera and Hymenoptera. Sci Rep 7:7CrossRefGoogle Scholar
  48. Preziosi RF, Fairbairn DJ, Roff DA, Brennan JM (1996) Body size and fecundity in the waterstrider Aquarius remigis: a test of Darwin’s fecundity advantage hypothesis. Oecologia 108:424–431CrossRefPubMedGoogle Scholar
  49. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  50. Ries L, Sisk TD (2008) Butterfly edge effects are predicted by a simple model in a complex landscape. Oecologia 156:75–86CrossRefPubMedGoogle Scholar
  51. Roff DA (1986) The genetic basis of wing dimorphism in the sand cricket, Gryllus firmus and its relevance to the evolution of wing dimorphism in insects. Heredity 57:221–231CrossRefGoogle Scholar
  52. Rosenzweig M (1995) Species diversity in space and time. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  53. Schlumprecht H, Waeber G (2003) Heuschrecken in Bayern. Ulmer Verlag, StuttgartGoogle Scholar
  54. Schneider G, Krauss J, Boetzl FA, Fritze MA, Steffan-Dewenter I (2016) Spillover from adjacent crop and forest habitats shapes carabid beetle assemblages in fragmented semi-natural grasslands. Oecologia 182:1141–1150CrossRefPubMedGoogle Scholar
  55. Schnell JK, Harris GM, Pimm SL, Russell GJ (2013) Estimating extinction risk with metapopulation models of large-scale fragmentation. Conserv Biol 27:520–530CrossRefPubMedGoogle Scholar
  56. Seibold S, Bässler C, Brandl R, Fahrig L, Förster B, Heurich M, Hothorn T, Scheipl F, Thorn S, Müller J (2017) An experimental test of the habitat-amount hypothesis for saproxylic beetles in a forested region. Ecology 98:1613–1622CrossRefPubMedGoogle Scholar
  57. Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432CrossRefGoogle Scholar
  58. Taylor PD, Merriam G (1995) Wing morphology of a forest damselfly is related to landscape structre. Oikos 73:43–48CrossRefGoogle Scholar
  59. Travassos-De-Britto B, da Rocha PLB (2013) Habitat amount, habitat heterogeneity, and their effects on arthropod species diversity. Ecoscience 20:207–214CrossRefGoogle Scholar
  60. Voith J, Beckmann A, Sachteleben J, Schlumprecht H, Waeber G (2016) Rote Liste und Gesamtartenliste der Heuschrecken (Saltatoria) Bayerns. Bayerisches Landesamt für Umwelt (LfU)Google Scholar
  61. WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273CrossRefGoogle Scholar
  62. Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69CrossRefPubMedGoogle Scholar
  63. Warzecha D, Diekötter T, Wolters V, Jauker F (2016) Intraspecific body size increases with habitat fragmentation in wild bee pollinators. Landscape Ecol 31:1449–1455CrossRefGoogle Scholar
  64. Weiss N, Zucchi H, Hochkirch A (2013) The effects of grassland management and aspect on Orthoptera diversity and abundance: site conditions are as important as management. Biodivers Conserv 22:2167–2178CrossRefGoogle Scholar
  65. Westphal C, Bommarco R, Carré G, Lamborn E, Morison N, Petandidou T, Potts SG, Roberts SPM,  Szentgyörgyi H, Tscheulin T, Vaissière BE, Woyciechowski M, Biesmeijer JC, Kunin WE, Settele J, Steffan-Dewenter I (2008) Measuring bee diversity in different European habitats and biogeographical regions. Ecol Monogr 78:653–671Google Scholar
  66. Wettstein W, Schmid B (1999) Conservation of arthropod diversity in montane wetlands: effect of altitude, habitat quality and habitat fragmentation on butterflies and grasshoppers. J Appl Ecol 36:363–373CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Animal Ecology and Tropical Biology, BiocenterUniversity of WürzburgWürzburgGermany

Personalised recommendations